$$
\boldsymbol{X}=\boldsymbol{1} \left\lvert\, \begin{aligned}
& \text { Resources:The slides of this lecture were derived from } \\
& \text { [Järvi], with permission of the original author, by copy \& } \\
& \text { paste or by selection, annotation, or rewording. [Järvi] is in } \\
& \text { turn based on [Pierce] as the underlying textbook. }
\end{aligned}\right.
$$ let $x=1$ in ...

$$
x(1)
$$

! $x(1)$

$x . \operatorname{set}(1)$

Programming Language Theory

The Simply Typed Lambda Calculus

Ralf Lämmel

[^0]
Towards typed lambda calculus

- Now suppose you want to distinguish values of different types:
- Booleans
+ Numbers
- Functions on Booleans
- Functions on functions on Booleans
- Products, sums of ...
+ ...
- These types need to be ...
+ specified in the program, and
- checked to be correct.

Setting up the simply typed lambda calculus

- Define syntax for simple types and function types.
- Extend lambda abstractions for explicit types.
- Define typing rules.
- Revise reduction semantics.
- Establish type safety.
- Consider extensions.

Revised lambda abstraction

- Lambda abstractions are annotated with types:
$\lambda x: T . t$
- Grammar of types:
$T::=$ bool
We only consider these simple types here for simplicity.
nat

$$
T \rightarrow T
$$

Examples

- What are the types of these terms?
$+\lambda x$: bool. x
+ λ f: bool \rightarrow bool. $f x$

Note that lambda variables are typed explicitly.

- Here are the same terms for the untyped calculus:
$+\lambda x . x$
$+\lambda f . f x$

Meaningless terms

- Some terms diverge.
- Some applications are ill-typed, e.g.:

$$
(\lambda f: \text { bool } \rightarrow \text { bool.f } x \text {) true }
$$

- Goal: a type system to reject ill-typed terms.

Typing relation with context

$\Gamma \vdash t: T \quad$ Term t has type T in the typing context Γ

- A typing context is a sequence of bindings.
- Each binding is a variable-type pair, e.g.: x : T.
- Contexts are composed as in $\Gamma, x: T$.
- All variable names are distinct for a given $\boldsymbol{\Gamma}$.
- 「 can be omitted if it is empty.- 「 can be empty for closed terms.

Typing rules for simply-typed lambda calculus

- x, y, z, f, g range over variables
- s, t, u range over terms
- S, T, U range over types

$$
\begin{array}{ll}
\text { T-Variable } & \text { T-Abstraction } \\
\frac{x: T \in \Gamma}{\Gamma \vdash x: T} & \frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T . u: T \rightarrow U} \\
& \frac{\Gamma \vdash t \text {-Application }}{} \\
& \\
& \\
\Gamma \vdash t u: T
\end{array}
$$

Rules for bool

T-True
\vdash true : bool

T-False
\vdash false: bool

These typing rules illustrate one option to add specific types and their operations to a basic lambda calculus. Basically, we need to add one rule per operation.

Typing derivations

Construct derivations as proofs of terms having a certain type.
$\frac{\frac{f: \text { bool } \rightarrow \text { bool } \in f: \text { bool } \rightarrow \text { bool }}{f: \text { bool } \rightarrow \text { bool } \vdash f: \text { bool } \rightarrow \text { bool }}}{\frac{f: \text { bool } \rightarrow \text { bool } \vdash f \text { false }: \text { bool }}{\vdash(\lambda f: \text { bool } \rightarrow \text { bool.f false }):(\text { bool } \rightarrow \text { bool }) \rightarrow \text { bool }}} \underset{\vdash(\lambda f: \text { bool } \rightarrow \text { bool. } f \text { false }) \lambda g: \text { bool. } g: \text { bool }}{\vdash(\text { bool }} \quad \frac{g: \text { bool } \in g: \text { bool }}{g: \text { bool } \vdash g: \text { bool }}$

T-Variable $x: T \in \Gamma$	T-Abstraction $\Gamma \vdash x: T$
	$\frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T . u: T \rightarrow U}$
	$\frac{\text { T-Application }}{}$

Evaluation rules

- Syntax (terms, values, types)

$$
\begin{aligned}
t & : \\
v & =x|v| t t \\
v & :=\lambda x: T . t \mid \text { true } \mid \text { false } \\
T & :=\text { bool } \mid T \rightarrow T
\end{aligned}
$$

- Evaluation rules

$$
\begin{aligned}
\frac{t_{1}}{t_{1} t_{2}} \rightarrow t_{1}{ }^{\prime} t_{1}^{\prime} t_{2} & \frac{t \rightarrow t^{\prime}}{v t \rightarrow v t^{\prime}} \\
& (\lambda \times \because T . t) \vdots v \rightarrow[v / x] t
\end{aligned}
$$

Evaluation rules do not bother with types.

Type safety
 $=$ progress + preservation

Progress: If t is a closed, well-typed term, then either t is a value, or there exists some u, such that $t \rightarrow u$.
Preservation: If $\Gamma \vdash t: T$ and $t \rightarrow u$, then $\Gamma \vdash u: T$

> Requires several trivial lemmas (properties) that are omitted here.

A few extensions

- Recursion (fixed point combinator)
- Unit type and sequencing (for effects eventually)
- Type annotation (for documentation, abstraction)
- Pairs (as a simple form of type construction)
- Lists (another example of type construction)
- Records (as a first step towards objects)

Recursion

- A fixed point combinator is definable in the untyped calculus.
- It is not definable in the simply typed version.
- A special combinator is added to the formal system.
- Alternatively, a more powerful type system is needed.

Recursion in the presence of types

- Self application is not typeable: $\lambda x: ? . x x$
- Y is not typeable either.
- Solution: add a primitive fix.

$$
t::=\text {... | fix } t
$$

> Typing rule $\frac{\Gamma \vdash t: T \rightarrow T}{\Gamma \vdash \text { fix } t: T}$

$$
\begin{gathered}
\text { Evaluation rules } \\
\frac{t \rightarrow t^{\prime}}{\text { fix } t \rightarrow \mathrm{fix}^{\prime}} \\
\operatorname{fix}(\lambda x: T . t) \rightarrow[(\mathrm{fix}(\lambda x: T . t)) / x] t
\end{gathered}
$$

Illustration of fix

$$
\begin{aligned}
& \text { iseven : nat } \rightarrow \text { bool } \\
& \text { iseven }=\text { fix g }
\end{aligned}
$$

g is a generator for the iseven function. Given a function that equates with iseven for numbers up to n, g defines an approximation up to $n+2$. fix g extends this to all n.
g: (nat \rightarrow bool) \rightarrow nat \rightarrow bool
$g=\lambda$ e:nat \rightarrow bool. $\boldsymbol{\lambda}$ x:nat.
if iszero x then true

> else if iszero (pred x) then false else e (pred (pred x))

Unit type and sequencing

- New syntax: $t::=\ldots$ unit $\mid t ; t$
- New value: $v::=$... unit
- New type: $T::=\ldots$ unit
- Typing of unit and sequencing:

$$
\Gamma \vdash \text { unit: unit } \quad \frac{\Gamma \vdash t: \text { unit } \quad \Gamma \vdash u: U}{\Gamma \vdash t ; u: U}
$$

- Evaluation of sequencing:

$$
\frac{t \rightarrow u}{t ; s \rightarrow u ; s}
$$

unit; $u \rightarrow u$

Type annotation (ascription)

- Syntax:
$t::=. . . \mid t$ as T
- Typing rule:

$$
\frac{\Gamma \vdash t: T}{\Gamma \vdash t \text { as } T: T}
$$

- Evaluation rules:

$$
\begin{gathered}
t \rightarrow u \\
t \text { as } T \rightarrow u \text { as } T \\
v \text { as } T \rightarrow v
\end{gathered}
$$

This slide is derived from Jaakko Järvi's slides for his course "Programming Languages", CPSC 604 @ TAMU.

Pairs

New syntax: $t::=. . .\{t, t\}|t .1| t .2$ New types: $\quad T:==. . . T \times T$

- Typing of pairs:

$$
\frac{\Gamma \vdash t: T \quad \Gamma \vdash u: U}{\Gamma \vdash\{t, u\}: T \times U} \quad \frac{\Gamma \vdash t: T \times U}{\Gamma \vdash t .1: T} \quad \frac{\Gamma \vdash t: T \times U}{\Gamma \vdash t .2: U}
$$

- Evaluation rules:

$$
\begin{array}{rrr}
\left\{v_{1}, v_{2}\right\} .1 \rightarrow v_{1} & \left\{v_{1}, v_{2}\right\} .2 \rightarrow v_{2} & \frac{t \rightarrow t^{\prime}}{\{t, u\}} \rightarrow\left\{\left\{t^{\prime}, u\right\}\right. \\
\frac{u}{\frac{u}{4} \rightarrow u^{\prime}} & \frac{t \rightarrow t^{\prime}}{t .1 \rightarrow t^{\prime} .1} & \frac{t \rightarrow t^{\prime}}{t .2 \rightarrow t^{\prime} .2}
\end{array}
$$

Lists

- New type: ... | List T
- New syntax: ... | nil[T] | cons[T] t t isnil[T] t | head[T] t | tail[T] t
- New congruence rules, e.g.: $\frac{t_{1} \rightarrow t_{1}^{\prime}}{\operatorname{cons}[T] t_{1} t_{2} \rightarrow \operatorname{cons}[T] t_{1}^{\prime} t_{2}}$
- New computation rules, e.g.: head[S] (cons[T] $\left.v_{1} v_{2}\right) \rightarrow v_{1}$
- New typing rules, e.g.: $\frac{\Gamma \vdash t: \text { List } T}{\Gamma \vdash \operatorname{head}[T] t: T}$

Records

- Pairs generalize to tuples.
- Tuples further generalize to records.
- Records generalize to extensible records.
- Extensible records generalize to objects.

We use the syntax:

```
{age=44, name="Smith"} // record value
{age=44, name="Smith"}.name // field access
```

and write the types as:

```
{age=44, name="Smith"} : {age:Int, name:String}
```

This slide is derived from Jaakko Järvi's slides for his course "Programming Languages", CPSC 604 @ TAMU.

Records

- New syntax: $t::=\ldots\left\{I_{i}=t_{i}{ }^{i \in 1 \ldots n}\right\} \mid t . l$
- New values: $v::=\ldots\left\{l_{i}=v_{i}^{i \in 1 \ldots n}\right\}$
- New types: $T::=\ldots\left\{l_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\}$
- Typing of records:

$$
\frac{\text { for each } i, \Gamma \vdash t_{i}: T_{i}}{\Gamma \vdash\left\{I_{i}=t_{i}^{i \in 1 \ldots n}\right\}:\left\{I_{i}: T_{i}^{i \in 1 \ldots n}\right\}} \quad \frac{\Gamma \vdash t:\left\{I_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\}}{\Gamma \vdash t . I_{j}: T_{j}}
$$

- Evaluation rules:

$$
\begin{gathered}
\left\{l_{i}=v_{i}^{i \in 1 . . n}\right\} . l_{j} \rightarrow v_{j} \quad \frac{t \rightarrow t^{\prime}}{t . I \rightarrow t^{\prime} . l} \\
t_{j} \rightarrow t_{j}^{\prime}
\end{gathered}
$$

Prolog as a sandbox for semantics of lambda calculi

Typed NB

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/nb/

Types in NB

$N B$ typing rules

T-True	T-False	T-If	
true : Bool	false:Bool	$\frac{t_{1}: \text { Bool }}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3}: T} t_{3}: T$	
T-Zero	T-Succ	T-Pred	T-Iszero
$0:$ Nat	$\frac{t: \text { Nat }}{\text { succ } t: \text { Nat }}$	$\frac{t: \text { Nat }}{\text { pred } t: \text { Nat }}$	$\frac{t: \text { Nat }}{\text { iszero } t: \text { Bool }}$

NB typing rules

welltyped(true,bool). welltyped(false,bool). welltyped(zero,nat).
welltyped(succ(T),nat) :- welltyped(T,nat).
welltyped(pred(T),nat) :- welltyped(T,nat).
welltyped(iszero(T),bool) :- welltyped(T,nat).
welltyped(if(TI,T2,T3),T) :-
wellyped(Tl,bool),
wellyped(T2,T),
wellyped(T3,T).

Conditional evaluation for typed $N B$

main(Input)
:-
see(Input), read (Term), seen,
format('Input term: $\sim w \sim n^{\prime},[$ Term]),
welltyped(Term,Type),
format('Type of term: $\sim w \sim n ',[$ Type]),
manysteps(Term, X),
show (X, Y),
format('Value of term: $\sim w \sim n ',[Y])$.

An applied, typed lambda calculus

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/

Revised syntax

- Lambda abstractions are annotated with types:

$$
\lambda x: T . t
$$

- Grammar of types:

$$
T::=\text { bool }
$$

nat
$T \rightarrow T$

Revised syntax

:- ['./applied/term.pro'].
:- ['../applied/value.pro'].

term $(\operatorname{lam}(X, A, T)):$:-variable (X), type (A), term (T). term(fix(T)) :- term(T).
value $(\operatorname{lam}(X, A, T))$:- variable (\times), type (A), term (T).
type(bool).
type(nat).
type(fun(AI,A2)) :- type(AI), type(A2).

Typing rules for simply-typed lambda calculus

- x, y, z, f, g range over variables
- s, t, u range over terms
- S, T, U range over types

$$
\begin{aligned}
& \text { T-Variable } \\
& x: T \in \Gamma \\
& \Gamma \vdash x: T \\
& \text { T-Abstraction } \\
& \frac{\Gamma, x: T \vdash u: U}{\Gamma \vdash \lambda x: T . u: T \rightarrow U} \\
& \text { T-Application } \\
& \Gamma \vdash t: U \rightarrow T \quad \Gamma \vdash u: U \\
& \Gamma \vdash t u: T
\end{aligned}
$$

Typing rules for simply-typed lambda calculus

```
:- ensure_loaded('..././shared/map.pro').
welltyped(G,var(X),A)
:-
    member((X,A),G).
welltyped(G,app(TI,T2),B)
:-
    welltyped(G,TI,fun(A,B)),
    welltyped(G,T2,A).
welltyped(G I ,lam(X,A,T),fun(A,B))
:-
    update(GI,X,A,G2),
    welltyped(G2,T,B).
```


Lifted typing rules of $N B$

welltyped(T,A) :- welltyped($\square, \mathrm{T}, \mathrm{A})$.
welltyped(_,true,bool).
welltyped(_,false,bool).

We had to rewrite the typing rules for NB to incorporate the typing context.
welltyped(_,zero,nat).
welltyped(G,succ(T),nat) :- welltyped(G,T,nat).
welltyped(G,pred(T),nat) :- welltyped(G,T,nat).
welltyped(G,iszero(T),bool) :- welltyped(G,T,nat).
welltyped(G,if(TI,T2,T3),T) :-
welltyped(G,TI,bool),
welltyped(G,T2,T),
welltyped(G,T3,T).

Small-step semantics

$$
\begin{aligned}
& t_{1} \rightarrow t_{1}{ }^{\prime} \\
& t_{1} t_{2} \rightarrow t_{1}{ }^{\prime} t_{2} \\
& v t \rightarrow v t^{\prime} \\
& (\lambda x T . t) v \rightarrow[v / x] t \\
& \text { Types play no role in the } \\
& \text { semantics. }
\end{aligned}
$$

Update on evaluation rules

The fix construct

Since fixed point combinators are not typeable in this calculus, we need fix instead.

$$
\begin{aligned}
& \text { Syntax fix. } \\
& t::=\text {... | fix } t
\end{aligned}
$$

Typing rule

$$
\frac{\Gamma \vdash t: T \rightarrow T}{\Gamma \vdash \mathrm{fix} t: T}
$$

$$
\begin{gathered}
\text { Evaluation rules } \\
\frac{t \rightarrow t^{\prime}}{\text { fix } t \rightarrow \mathrm{fix}^{\prime}} \\
\operatorname{fix}(\lambda x: T . t) \rightarrow[(\mathrm{fix}(\lambda x: T . t)) / x] t
\end{gathered}
$$

The fix construct

Evaluation rules

```
eval(fix(TI ),fix(T2)) :- eval(TI,T2).
eval(fix(lam(X,TI)),T2) :- substitute(fix(lam(X,TI)),X,TI,T2).
substitute(N,X,fix(TI ),fix(T2)) :- substitute(N,X,TI,T2).
freevars(fix(T),FV) :- freevars(T,FV).
```

Typing rule
welltyped(G,fix(T),A)
:-
welltyped(G,T,fun(A,A)).

- Summary: The typed lambda calculus
+ Typing relation carries argument for context.
+ Many forms of types can be added modularly.
+ Recursion requires built-in Y combinator.
- Prepping: "Types and Programming Languages"
+ Chapters 7 and II
- Outlook:
+ Lambda calculi with polymorphism
- Process calculi
+ Object calculi

[^0]: [ärvi] Slides by J. Järvi: "Programming Languages", CPSC 604 @ TAMU (2009)
 [Pierce] B.C. Pierce:Types and Programming Languages, MIT Press, 2002

