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• Now suppose you want to distinguish values of different types:
✦ Booleans
✦ Numbers
✦ Functions on Booleans
✦ Functions on functions on Booleans
✦ Products, sums of ...
✦ ...

• These types need to be ...
✦ specified in the program, and
✦ checked to be correct.

235

Towards typed lambda calculus

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Setting up the simply typed 
lambda calculus

• Define syntax for simple types and function types.

• Extend lambda abstractions for explicit types.

• Define typing rules.

• Revise reduction semantics.

• Establish type safety.

• Consider extensions.

236
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Revised lambda abstraction

• Lambda abstractions are annotated with types:

λx : T.t

• Grammar of types:

T ::=	
 bool

	
 	
 nat

	
 	
 T→T

237

We only consider these simple 
types here for simplicity.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Examples

• What are the types of these terms?

✦ λx : bool.x 

✦ λf : bool → bool.f x

• Here are the same terms for the untyped calculus:

✦ λx .x 

✦ λf.f x

238

Note that lambda variables 
are typed explicitly.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Meaningless terms

• Some terms diverge.

• Some applications are ill-typed, e.g.:

(λf : bool → bool.f x) true

• Goal: a type system to reject ill-typed terms.

239

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Typing relation with context

240

Adding types to lambda-calculus

Typing relation with context

Now our typing relation (with context/environment information) is a
three-place relation (Γ, t, T ), written as:

Γ � t : T

and read as:
Term t has type T in the typing context Γ

If Γ = ∅, it is usually omitted

� t : T
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• A typing context is a sequence of bindings.

• Each binding is a variable-type pair, e.g.: x : T.

• Contexts are composed as in Γ, x :  T.

• All variable names are distinct for a given Γ.

• Γ can be omitted if it is empty.

• Γ can be empty for closed terms.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Typing rules for simply-typed 
lambda calculus

241

Adding types to lambda-calculus

Typing rules for simply-typed lambda calculus

x , y , z , f , g range over variables
s, t, u range over terms
S , T , U range over types

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

11 / 42

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Rules for bool

242

Adding types to lambda-calculus

Rules for bool

T-True
� true : bool

T-False
� false : bool

12 / 42

These typing rules illustrate one option to 
add specific types and their operations to a 
basic lambda calculus. Basically, we need 

to add one rule per operation.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Typing derivations

243

Construct derivations as proofs of terms having a certain type.

Adding types to lambda-calculus

Typing derivations

We can construct derivations (proofs) that explain why a given term
has a certain type
Example: (λf : bool→ bool.f false)λg : bool.g has type bool
(under empty environment)

f :bool�bool ∈ f :bool�bool

f :bool�bool � f : bool�bool f :bool�bool � false : bool

f :bool�bool � f false : bool

� (λf :bool�bool.f false) : (bool�bool)�bool

g :bool ∈ g :bool

g :bool � g : bool

� λg :bool.g : bool�bool

� (λf :bool�bool.f false) λg :bool.g : bool

13 / 42

Adding types to lambda-calculus

Typing rules for simply-typed lambda calculus
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Evaluation rules

244

• Syntax (terms, values, types)

• Evaluation rules

Evaluation rules do not bother with types.

Adding types to lambda-calculus

Evaluation rules

Syntax

t ::=x | v | t t
v ::=λx :T .t | true | false
T ::=bool|T �T

t = terms, v = value, T = type

Evaluation rules

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx :T .t) v → [v/x ]t

→ is the smallest binary relation
on terms satisfying the rules

Note again that evaluation rules do not bother with types!
Type checker’s task to reject programs that try to apply rules for
meaningless types
This corresponds (to some extent) to language implementations

14 / 42
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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 Type safety 
=	
 progress + preservation

245

Type safety

Type safety

We again define type safety of simply typed lambda-calculus via the
progress and preservation theorems
Reminder:

Type safety = progress + preservation

Progress: If t is a closed, well-typed term, then either t is a value, or
there exists some u, such that t → u.
Preservation: If Γ � t : T and t → u, then Γ � u : T

16 / 42

Requires several trivial lemmas 
(properties) that are omitted here.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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A few extensions

246

• Recursion (fixed point combinator)

• Unit type and sequencing (for effects eventually)

• Type annotation (for documentation, abstraction)

• Pairs (as a simple form of type construction)

• Lists (another example of type construction)

• Records (as a first step towards objects)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Recursion

• A fixed point combinator is definable in the untyped calculus.

• It is not definable in the simply typed version.

✦ A special combinator is added to the formal system.

✦ Alternatively, a more powerful type system is needed.

247
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Recursion in the presence of types

248

• Self application is not typeable:

λx : ? . x x

• Y is not typeable either.

• Solution: add a primitive fix.
t ::= ... | fix t

Aside: general recursion

The fix operator

We discussed the fix point operator (Y-combinator, fix), and showed
its definition in untyped lambda calculus
Just like self-application, fix cannot be typed in simply-typed lambda
calculus
Simple fix: add fix as a primitive

fix (λx : T .t)→ [(fix (λx : T .t))/x ] t

t → t �

fix t → fix t �

Γ � t : T → T
Γ � fix t : T

16 / 50
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Evaluation rules

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Illustration of fix

249

iseven : nat → bool

iseven = fix g

g: (nat→ bool)→ nat→ bool

g = λ e:nat → bool. λ x:nat.

if iszero x then true 

	
 else if iszero (pred x) then false 

	
 	
 else e (pred (pred x))

g is a generator for the iseven 
function. Given a function that 

equates with iseven for numbers up 
to n, g defines an approximation up 
to n + 2. fix g extends this to all n.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Unit type and sequencing

250

Warmup — simple extensions

Unit type and sequencing

New syntax: t ::= . . . unit | t; t
New value: v ::= . . . unit
New type: T ::= . . . unit
Typing of unit and sequencing:

Γ � unit : unit
Γ � t : unit Γ � u : U

Γ � t; u : U

Evaluation of sequencing:

t → u
t; s → u; s

unit; u → u

36 / 42

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Type annotation (ascription)

251

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Syntax:

t ::= ... | t as T

• Typing rule:

• Evaluation rules:

Subtyping and other extensions

Ascription

Reminder. Type rules:

Γ � t : T
Γ � t as T : T

Evaluation rules:

t → u
t as T → u as T

v as T → v

18 / 40
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Pairs

252

Warmup — simple extensions

Pairs

New syntax: t ::= . . . {t, t} | t.1 | t.2
Typing of pairs:

Γ � t : T Γ � u : U
Γ � {t, u} : T × U

Γ � t : T × U
Γ � t.1 : T

Γ � t : T × U
Γ � t.2 : U

Evaluation rules:

{v1, v2}.1→ v1 {v1, v2}.2→ v2
t → t �

{t, u}→ {t �, u}

u → u�

{v , u}→ {v , u�}
t → t �

t.1→ t �.1
t → t �

t.2→ t �.2

39 / 42

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

New syntax: 	
 t ::= ... {t, t} | t.1 | t.2
New types:	
 T ::= ... T x T
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Lists

253

• New type:  ... | List T

• New syntax:  ... | nil[T] | cons[T] t t | isnil[T] t | head[T] t | tail[T] t

• New congruence rules, e.g.: 

• New computation rules, e.g.: 

• New typing rules, e.g.: 

Aside: general recursion

Evaluating and typing lists

Computation rules, just one example here, rest at home...

head[S ] (cons[T ] v1 v2)→ v1

Typing rules. Again, one example, rest at home....

Γ � t : List T
Γ � head[T ] t : T

Both fix and lists were extensions to simply typed lambda calculus,
with their own special typing and evaluation rules

19 / 50
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Aside: general recursion

Lists

New type: List T
New syntax

nil[T]
cons[T] t t
isnil[T] t
head[T] t
tail[T] t

Congruence rules...

t1 → t �
1

cons[T ] t1 t2 → cons[T ] t �
1 t2

do the rest at home...
18 / 50

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Records

254

• Pairs generalize to tuples.

• Tuples further generalize to records.

• Records generalize to extensible records.

• Extensible records generalize to objects.

Warmup — simple extensions

Records

Pairs generalize easily to tuples (try this at home)

... and tuples to records

We use the syntax:

{age=44, name="Smith"} // record value
{age=44, name="Smith"}.name // field access

and write the types as:

{age=44, name="Smith"} : {age:Int, name:String}

Of course we haven’t defined Ints or Strings, but we can just

assume more base types

40 / 42

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Records

255

Warmup — simple extensions

Records

New syntax: t ::= . . . {li = ti i∈1...n} | t.l
New values: v ::= . . . {li = vi

i∈1...n}
New types: T ::= . . . {li : Ti

i∈1...n}
Typing of records:

for each i , Γ � ti : Ti

Γ � {li = ti i∈1...n} : {li : Ti
i∈1...n}

Γ � t : {li : Ti
i∈1...n}

Γ � t.lj : Tj

Evaluation rules:

{li = vi
i∈1...n}.lj → vj

t → t �

t.l → t �.l

tj → tj �

{li = vi
i∈1...j−1, lj = tj , lk = tkk∈j+1...n}

→ {li = vi
i∈1...j−1, lj = tj �, lk = tkk∈j+1...n}

41 / 42

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Prolog as a sandbox for 
semantics of lambda calculi

256
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Typed NB

257

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/nb/
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Types in NB

258

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
Types for NB

NB typing rules

First, we need a few new syntactic forms
T ::= types:

Bool the Boolean type
Nat the type of numeric values

And typing rules:

T-True
true : Bool

T-False
false : Bool

T-If
t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

T-Zero
0 : Nat

T-Succ
t : Nat

succ t : Nat

T-Pred
t : Nat

pred t : Nat

T-Iszero
t : Nat

iszero t : Bool

15 / 28



© Ralf Lämmel, 2009-2012 unless noted otherwise

NB typing rules
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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NB typing rules

260

Prolog

welltyped(true,bool).
welltyped(false,bool).
welltyped(zero,nat).
welltyped(succ(T),nat) :- welltyped(T,nat).
welltyped(pred(T),nat) :- welltyped(T,nat).
welltyped(iszero(T),bool) :- welltyped(T,nat).
welltyped(if(T1,T2,T3),T) :-
 welltyped(T1,bool),
 welltyped(T2,T),
 welltyped(T3,T).

1:1 mapping
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Conditional evaluation
for typed NB

261

main(Input)
 :-
    see(Input), read(Term), seen,
    format('Input term: ~w~n',[Term]),
    welltyped(Term, Type),    
    format('Type of term: ~w~n',[Type]),
    manysteps(Term,X),
    show(X,Y),
    format('Value of term: ~w~n',[Y]).

Prolog
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An applied, typed lambda calculus

262

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/
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Revised syntax

• Lambda abstractions are annotated with types:

λx : T.t

• Grammar of types:

T ::=	
 bool

	
 	
 nat

	
 	
 T→T

263

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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:- ['../applied/term.pro'].
:- ['../applied/value.pro'].

term(lam(X,A,T)) :- variable(X), type(A), term(T).
term(fix(T)) :- term(T).

value(lam(X,A,T)) :- variable(X), type(A), term(T).

type(bool).
type(nat).
type(fun(A1,A2)) :- type(A1), type(A2).

The untyped version is no 
longer to be used.

Prolog

Build on top of untyped 
applied lambda calculus.

Revised syntax
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Typing rules for simply-typed 
lambda calculus

265

Adding types to lambda-calculus

Typing rules for simply-typed lambda calculus

x , y , z , f , g range over variables
s, t, u range over terms
S , T , U range over types

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

11 / 42
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Prolog

:- ensure_loaded('../../shared/map.pro').

welltyped(G,var(X),A)
 :-
    member((X,A),G).

welltyped(G,app(T1,T2),B)
 :-
    welltyped(G,T1,fun(A,B)),
    welltyped(G,T2,A).

welltyped(G1,lam(X,A,T),fun(A,B))
 :-
    update(G1,X,A,G2),
    welltyped(G2,T,B).

Typing rules for simply-typed lambda calculus
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Lifted typing rules of NB

267

Prolog

welltyped(T,A) :- welltyped([],T,A).

welltyped(_,true,bool).
welltyped(_,false,bool).
welltyped(_,zero,nat).
welltyped(G,succ(T),nat) :- welltyped(G,T,nat).
welltyped(G,pred(T),nat) :- welltyped(G,T,nat).
welltyped(G,iszero(T),bool) :- welltyped(G,T,nat).
welltyped(G,if(T1,T2,T3),T) :-
 welltyped(G,T1,bool),
 welltyped(G,T2,T),
 welltyped(G,T3,T).

We had to rewrite the typing 
rules for NB to incorporate the 

typing context.
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Small-step semantics

268

Adding types to lambda-calculus

Evaluation rules

Syntax

t ::=x | v | t t
v ::=λx :T .t | true | false
T ::=bool|T �T

t = terms, v = value, T = type

Evaluation rules

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx :T .t) v → [v/x ]t

→ is the smallest binary relation
on terms satisfying the rules

Note again that evaluation rules do not bother with types!
Type checker’s task to reject programs that try to apply rules for
meaningless types
This corresponds (to some extent) to language implementations

14 / 42

Types play no role in the 
semantics.
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:- ['../applied/eval.pro'].

eval(lam(X,_,T),lam(X,T)).
substitute(N,X,lam(Y,_,M),T) :- substitute(N,X,lam(Y,M),T).
freevars(lam(X,_,M),FV) :- freevars(lam(X,M),FV).

Update on evaluation rules

269

“Type erasure” for lambdas

Prolog

Build on top of untyped 
applied lambda calculus.
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The fix construct

270

Syntax fix.

t ::= ... | fix t

Aside: general recursion

The fix operator

We discussed the fix point operator (Y-combinator, fix), and showed
its definition in untyped lambda calculus
Just like self-application, fix cannot be typed in simply-typed lambda
calculus
Simple fix: add fix as a primitive

fix (λx : T .t)→ [(fix (λx : T .t))/x ] t

t → t �

fix t → fix t �

Γ � t : T → T
Γ � fix t : T

16 / 50
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Evaluation rules

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Since fixed point combinators are 
not typeable in this calculus, we 

need fix instead.
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The fix construct
Prolog

welltyped(G,fix(T),A)
 :-
    welltyped(G,T,fun(A,A)).

Typing rule

Evaluation rules

eval(fix(T1),fix(T2)) :- eval(T1,T2).
eval(fix(lam(X,T1)),T2) :- substitute(fix(lam(X,T1)),X,T1,T2).
substitute(N,X,fix(T1),fix(T2)) :- substitute(N,X,T1,T2).
freevars(fix(T),FV) :- freevars(T,FV).
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• Summary: The typed lambda calculus
✦ Typing relation carries argument for context.
✦ Many forms of types can be added modularly.
✦ Recursion requires built-in Y combinator.

• Prepping: “Types and Programming Languages”
✦ Chapters 7 and 11

• Outlook:
✦ Lambda calculi with polymorphism
✦ Process calculi
✦ Object calculi
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