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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Quote

A type system Is a tractable syntactic method for proving
the absence of certain program behaviors by classifying
phrases according to the kinds of values they
compute. [B.C. Pierce]
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Meaningless programs

o \Whtle programs of arguable use

+ while true do skip (loops indefinitely)
+a := a + 1; (gets stuck because a may be undefined)

e [ype systems are meant to reject (some) meaningless programs.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

“C way'’ of dealing with
meaningless programs

* Reject some meaningless programs at compile time.
char* p = 1;

e Allow some meaningless programs w/o well-defined behavior.
union { char* p; int i; } my union;
void foo () {
my union.i = 1;
char* p = my union.p;
*p = ’a’; B

}
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

“Java way' of dealing with
meaningless programs

* Reject some meaningless programs at compile time.

int 1 = "Erroneous";

* Reject additional programs at runtime.

Stack s = new MyStack();
s.push ("foo") ;

int i = (int)s.pop();
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

“Scheme way'’ of dealing with
meaningless programs

* Reject none meaningless programs at compile time.

e Reject many programs at runtime.
(car (cons 1 2)) ; ok

(car 5) ; error at run-time

e (Makes It easy to move between data and code.)
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

What programs to reject when!

* Reject all meaningless programs at compile time!
+ Other than by rejecting too many programs!?
* Reject no meaningful programs at compile time?
+ This is impossible due to undecidability issues.
* Think of nontermination or division-by-zero.
e "Exact” type checking rules out important idioms.

+ Think of de-/serialization, reflection, etc.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

What programs to reject when!

Safe programs

Approximation of safe programs

All programs
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lype systems

e Define syntax.

Use Pierce’s B, NB
languages for today!

e Define semantics.

e Define syntax of type expressions. /

o Categorize syntactic categories by types.
+ Use a rule-based system as in semantics.

* Prove type safety.
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Introducing

* Languages

+ B ... Booleans

+ NB ... Naturals and Booleans
e Syntax definitions of B, NB

+ Grammar=style definrtion

+ Inductive rules (several styles)

+ Horn clauses (logic program)
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Meaningless N®B terms

e 1szero true
eif 0 then 1 else 2

e if true then 1 else false
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Syntax of the B language

e Grammar: f

— terms:
true constant true
false constant false
if t; then tr else 13 conditional

* Defines a set of terms, and t ranges over those terms.

e Item tis a metavariable (as opposed to a variable of ®).

* Term and expression mean the same thing for now.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Syntax of the N® language

t = terms:
true constant true
false constant false
if t; then tp else t3 conditional
o) constant zero
succ t SuCcessor
pred t predecessor
iszero t test for zero
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Defining terms with inductive rules

t1 €7 t1 €7

true € 7 false € T 0e7T
succ t1 €7 pred t; €7

t1 €7 t1 €7 tro €T t3 €7
iszero t1 € 7 if t7; then t, else t3€ 7
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Syntax definrtion
based on Horn clauses

4 )
term(true) . Effective as a
term(false) . syntax check
term (zero) . i Y
term(succ(T)) :- term(T).
term(pred(T)) :- term(T).
term(iszero(T)) :- term(T).

term(i£f(T1,T2,T3)) :- term(Tl), term(T2), term(T3).
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Semantics of B and N

* Big-step semantics
e Small-step semantics
e Some properties

e Normal forms / values
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Big-step semantics of B

B-True B-False B-IfTrue /
t1 | true to | t5
true || true false || false .
if t; then to else t3 | ty
B-IfFalse

t; || false t3 | t5
if t; then t; else t3 | t}
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

-xercising the semantics

e Are these terms the same!

+ if true then false else true

+ if false then true else (if true then false else true)
* |In a syntactic sense! No.

* In a semantic sense! Perhaps!

© Ralf Lammel, 2009-2012 unless noted otherwise 143



This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

it true then false else true
= If false then true else (if true then false else true) !

@ Meaning of if true then true else false:

true || true B-True false || false B-False

B-1fTrue

if true then false else true | false

() Meaning Of if false then true else (if true then false else true).

true |} true B-True false || false B-False
false |} false B-False if true then false else true |} false

B-1fTrue

B-IfFalse

if false then true else (if true then false else true) | false
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A property of the semantics

e Theorem: Evaluation is a total function.
e Proof:

+ Lemma; bEvaluation is deterministic.

+ Lemma: Every term evaluates to something.

+ Totality trivially follows.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Lemma (Evaluation is deterministic)

£ is a partial function. That is, if t || t; and t || t> then t; = t5.

Proof.

By induction on t. Let P(t) = (t f s At 1) = t = to.

Base cases, Case: t = true. The only rule matching true is true || true, thus
P(true) holds. Case: t = false. Similar.

Case: t = if t; then t, else t3. From P(ty), if for all t], t; J/ t{, no rule
matches and thus P(t) holds vacuously. Assume then t; |} t], which is unique by

P(tl).

O |If t{ = true and either t, |} t; for some unique t}, or for all t5, t> |} t5. In
the first case, t |} t5, in the second, for all ¢/, t |/ t". P(t) thus holds.

@ If t{ = false similar.

© If t] is neither true or false, no rule applies and thus P(t) holds vacuously.
1

[]
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Lemma (Every term evaluates to something)

For all t € 1B, there exists a term t' € I3, such that t || t’.

Proof.

By structural induction on t. Let's make a slightly stronger induction hypothesis:

P(t) def (t |} true vV t |} false).

Cases: t = true, t = false. Trivial.
Case: t = if t1 then ty else t3. By induction hypothesis either

@ t; || true. Then further by i.h., either

@ t» || true, and thus t || true, or
@ t» || false, and thus t || false.

@ t; || false. Then further by i.h., either

@ t3 | true, and thus t || true, or
@ t3 || false, and thus t || false.

Thus P(t) holds. As P implies the original property (t evaluates to some term), the lemma
follows.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Recall syntax of the N® language

t .= terms:
true constant true
false constant false
if t; then tr else t3 conditional
0 constant zero
succ t SuCcessor
pred t predecessor
iszero t test for zero

In order to define the evaluation relation for this
language concisely, it is useful to define a few syntactic
categories, and give them distinct metavariables.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Refined syntax definrtion
with categories of values

t = terms:
v value
if t; then t, else t3 conditional
succ t successor
pred t predecessor
iszero t test for zero

v o= values:
true constant true
false constant false
nv numeric value

nv = numeric values:
0 zero value
succ nv successor value
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Big-step semantics of N®&

B.Val N-Succ N-lszeroZero
_Ua He tl nv tl 0
viv
succ t || succ nv iszero t || true
N-IszeroSucc N-PredZero N-PredSucc
t | succ nv tl 0 t |} succ nv
iszero t || false pred t O pred t | nv
B-1fTrue B-IfFalse
t; | true to I v t; | false t3 | w3

if t; then tp else t3 | w» if t; then tp else t3 || w3

The choices of metavariables are significant.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Small-step semantics of N®

E-lszero

/ E-lszeroZero
t—t

iszero 0 — true

. . /
1szerot — 1szero t

E-Succ E-Pred
E-lszeroSucc AN N
iszero (succ nv) — false ; ;
succ t — succ t pred t — pred t
E-PredZero E-PredSucc E-IfTrue
pred 0 — O pred (succ nv) — nv if true then t; else t3 — t

E-IfFalse
if false then fp else t3 — 3

E-If
t1 — t]

if t; then tp else t3 — if ti then t, else t3
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Do B's properties carry over to N®/

Lemma ((7) Evaluation is deterministic)

Evaluation relation is a partial function. Thatis, ift |l t; and t || t» then  YeS
t1 = by.

Lemma ((?) Every term evaluates to something) No
For all t € N'BB, there exists a term t' € N'BB, such that t || t’.

Counter example for 2nd claim:
lszero true
(So we are getting stuck.)
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lype system

e Can't we use syntax for typing!

e Components of a type system
+ Types (type expressions) for NB
+ Type relation for NB

+ Typing rules for NB
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Syntactic categories as types

bterm(true) .

bterm(false) . b b |

bterm(iszero(T)) :- nterm(T). .. DOOIEAN
n .. number

nterm(zero) .

nterm(succ(T)) :- nterm(T).

nterm(pred(T)) :- nterm(T).

How to model “if””?
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

lypes in N®&

T = types:
Bool the Boolean type
Nat  the type of numeric values

4 N

Informally by saying “term t is of type T, we imply that
we can see (without evaluating 1) that t evaluates to
some normal form t which has type T.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

@ The notation for t is of type T is:

t: T
or
te T To be defined by

@ And more commonly: typing rules

[=t: T
where [ is the context, or typing environment

A

Not needed for NB
(which has no names)
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

N® typing rules

T-If
T-True T-False t; : Bool th: T tz3: T
true : Bool false : Bool
if t; then tp else t3: T
T.7 T-Succ T-Pred T-lszero
TEEro t : Nat t : Nat t : Nat

O : Nat

succ t: Nat pred t : Nat iszero t : Bool

We say that a term t is typ(e)able, or well-
typed if there is some T such that t: T.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

-Xamples

* What are the types of these terms?
+ succ (succ 0)
+1f iszero 0 then 0 else succ 0

+1f iszero 0 then 0 else false

e Draw the derivation trees.

© Ralf Lammel, 2009-2012 unless noted otherwise 158



This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

succ (succ 0)

O : Nat

L T-Succ
Derivation succ O - Nat

tree T-Succ
succ (succ 0) : Nat

T-Zero T-Suce

Typing t : Nat
rules O : Nat

succ t : Nat
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

1f i1iszero 0 then 0 else succ 0

O : Nat T-Zero O : Nat T-Zero
T-Succ T-Succ
iszero O : Bool O : Nat T-Zero succ 0O : Nat

T-If

if iszero O then O else succ 0 : Nat
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

1f i1szero 0 then 0 else false

0 : Nat T-Zero
T-Succ
iszero 0 :Bool 0:T(7?7) false: T(?)

1f 1iszero O then O else false : Nat

T-If
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Uniqueness of types

No term has more than one type. That is, ift: T1 and t : T», then
T1 = To.

This is clearly a desirable property.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Theorem (Uniqueness of types)
No term has more than one type. That is, if t : T1 and t : T», then

T1=T>.
Proof.
By induction on the structure of ¢ (using,inversion lemma). O |
------------- ~
See next slide.
@ In fact, a stronger property holds for A/ 3: L )

Theorem (Uniqueness of typing derivations)

Ift . T1 and t : Ty, then the typing derivations of t - T1 and t : T, are
equal.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

INnversion

The Inversion lemma reads the typing relation backwards, allowing us
to limit the possible types for many terms (by looking at their
top-level syntactic form)

Lemma (Inversion of typing relation)

If true : R, then R = Bool

If false : R, then R = Bool

If if t; then t» else t3 : R, then t; : Bool, t» : R, and t3 : R.
IfO: R, then R = Nat

If succ t; : R, then R = Nat and t; : Nat

If pred t; : R, then R = Nat and t; : Nat

If iszero t; : R, then R = Bool and t; : Nat
Proof.

Follows directly from the typing relation.

00060000
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

About unigueness

e Unigueness theorem does not hold for more complex languages.

e Consider; for example, a system with subtyping:

class A { ... };
class B extends A { ... };

B b; // b has both type B and type A
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

A key property:
Type safety, aka soundness

* Definition (first attempt)
Fach well-typed term evaluates to a value.
Fvaluation does not get stuck.

* Challenges for this (simplified) definition
+ Nontermination

+ Disagreement between predicted and actual type
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Type safety

* Type safety = progress + preservation
+ Progress:
A well typed term is either a value, or some evaluation rule applies.
+ Preservation:

Evaluation relation preserves well-typedness of a term.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Progress
(first side of type safety)

Theorem (Progress)

Assume t : T (ie., t is well-typed). Then, either t is a value, or t — t’ for
some t'.

Proof.

By induction on typing derivation t : T. Trivial if the last rule used is
T-True, T-False, or T-Zero (t is a value).

Case T-If: t is of the form if t; then t» else t3, where t; : Bool, tr : T,
and t3 : T. By the induction hypothesis, t1, t», and t3 each either are
values or evaluate (respectively) to some terms t, t5, and t5. If t; is a

false, and thus either t — t, or t — t3 using E-IfTrue or E-IfFalse. If
t; — ty, then t — if t] then t, else t3 by E-If.

Tf E-IfTrue
Reca” t : Bool tr: T ts: T if true then tr else t3 — 1>
if t; then tp else t3: T E-IfFalse

if false then tr else t3 — t3
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Canonical forms

This lemma allows us to limit the shapes of terms
(in fact, terms that are values) of different types.

Lemma (Canonical forms)
@ /f v is a value and has type Bool, then v is either true or false.

@ /f v is a value and has type Nat, then v is a numeric value as specified
In our grammar.,

Proof.

Immediate from the grammar and inversion lemma. []
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Progress cont’d

Theorem (Progress)

Assume t : T (ie., t is well-typed). Then, either t is a value, or t — t’ for
some t'.

Proof.

Case T-Pred: t is of the form pred t;, where t; : Nat. By the induction
hypothesis, t; is either a value or evaluates to some term t]. If t; is a value,

---------------------

from theggg_n_o_n_lg:_a] _f:o_r_n]s:_lgmrp_a_)we see it must be a numeric value, and
thus either t; = 0 or t; = succ nv. If t; =0, then t = pred 0 — 0 using
the rule E-PredZero. If t; = succ nv, then t = pred (succ nv) — nv.

If t; — t7, then rule E-Pred applies and t = pred t; — pred t;.

Case T-Succ: Exercise.
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This slide is derived from Jaakko Jarvi’s slides for his course ”"Programming Languages”, CPSC 604 @ TAMU.

Preservation (second side of type safety)

* Preservation theorem is also known as subject reduction:

Theorem (Preservation of well-typedness)

Ift: T andt — t', thent' : T' for some T'.

e FOr NB, we can prove a stronger preservation theorem:

Theorem (Preservation of typing)
Ift: T andt—t', thent : T.
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Proof of
preservation property

Theorem (Preservation of typing)

Ift: T andt — t', thent' : T.

By induction on typing derivation t : T.

Vacuously true for T-True, T-False, and T-Zero.

Case T-If: tis of the form if t; then t» else t3, where t; : Bool, t»: T,
and t3 : T. There are three possible rules for t — t':

Q If t1 = true, by E-IfTrue t evaluates to t, which is of type T.
Q@ If t; = false, by E-IfFalse t evaluates to t3 which has type T.

© Otherwise E-If must apply and t; — t] for some t;. By induction
hypothesis, t| is of the same type as t;: type Bool. Thus
t' = if t{ then tp else t3, where t{ : Bool, to: T, and t3: T. The
type of this t’ is thus T.

Cases I-Pred and I-Succ omitted.
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* Summary: lype systems
+ Reject meaningless programs.
+ Use a rule-based specification, again.
+ lype safety relates semantics and type system.
* Prepping: "Iypes and Programming Languages”
+ Chapters |, 3 and &
* Outlook:
+ The lambda calculus
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