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Quote

127

A type system is a tractable syntactic method for proving 
the absence of certain program behaviors by classifying 
phrases according to the kinds of values they 
compute. [B.C. Pierce]

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Meaningless programs

• While programs of arguable use

✦ while true do skip (loops indefinitely)

✦ a := a + 1; (gets stuck because a may be undefined)

• Type systems are meant to reject (some) meaningless programs.

128
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“C way” of dealing with
meaningless programs

129

• Reject some meaningless programs at compile time.
char* p = 1;

• Allow some meaningless programs w/o well-defined behavior.
union { char* p; int i; } my_union;

void foo() { 

 my_union.i = 1;

 char* p = my_union.p;

  *p = ’a’; 

}

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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“Java way” of dealing with
meaningless programs

130

• Reject some meaningless programs at compile time.

int i = "Erroneous";

• Reject additional programs at runtime.

Stack s = new MyStack();

s.push("foo");

int i = (int)s.pop();

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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“Scheme way” of dealing with
meaningless programs

131

• Reject none meaningless programs at compile time.

• Reject many programs at runtime.

(car (cons 1 2))  ; ok 

(car 5)     ; error at run−time

• (Makes it easy to move between data and code.)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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What programs to reject when?

• Reject all meaningless programs at compile time?

✦ Other than by rejecting too many programs?

• Reject no meaningful programs at compile time?

✦ This is impossible due to undecidability issues.

★ Think of nontermination or division-by-zero.

• “Exact” type checking rules out important idioms.

✦ Think of de-/serialization, reflection, etc.

132

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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What programs to reject when?

133

Types for NB

Ideal(?) way

Reject all meaningless programs at compile-time

Is this possible? Yes, easily.

How about: “Reject all meaningless programs at compile-time and no

meaningful ones?”

Safe programs

All programs

Approximation of safe programs

7 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Type systems

• Define syntax.

• Define semantics.

• Define syntax of type expressions.

• Categorize syntactic categories by types.

✦ Use a rule-based system as in semantics.

• Prove type safety.

134

Use Pierce’s B, NB 
languages for today!

A type is a set 

of terms.
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Introducing B and NB

• Languages

✦ B ... Booleans

✦ NB ... Naturals and Booleans

• Syntax definitions of B, NB

✦ Grammar-style definition

✦ Inductive rules (several styles)

✦ Horn clauses (logic program)

135
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Meaningless NB terms

•iszero true

•if 0 then 1 else 2

•if true then 1 else false

136

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Syntax of the B language

137

• Grammar:

• Defines a set of terms, and t ranges over those terms.

• Item t is a metavariable (as opposed to a variable of B).

• Term and expression mean the same thing for now.

Semantics

Evaluation relation (just Booleans for now)

Language B
t ::= terms:

true constant true
false constant false
if t1 then t2 else t3 conditional

We can define the evaluation relation E inductively:
E is the smallest relation between terms of our language such that

(true, true) ∈ E
(false, false) ∈ E
(if t1 then t2 else t3, t) ∈ E if

(t1, true ∈ E) and (t2, t) ∈ E , or
(t1, false ∈ E) and (t3, t) ∈ E

The meaning of t1 is t2, if (t1, t2) ∈ E

35 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Syntax of the NB language

138

Syntax

Running example: language of arithmetic expressions

The following grammar defines a language for arithmetic expressions
t ::= terms:

true constant true
false constant false
if t1 then t2 else t3 conditional
0 constant zero
succ t successor
pred t predecessor
iszero t test for zero

Defines a set of terms, and t ranges over those terms
Item t is a metavariable

“Meta” because not a variable of the language being defined
Subscripts are used to denote different metavariables from the same
syntactic category

Term and expression mean the same thing for now
24 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Defining terms with inductive rules

139

Syntax

Defining terms with inference rules

true ∈ T false ∈ T 0 ∈ T
t1 ∈ T

succ t1 ∈ T
t1 ∈ T

pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

Read these as:
If the statements in the premises above the line are
established, the conclusions below the line can be derived.

It is understood that a set of inference rules defines the smallest set
that satisfy the rules

28 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Syntax definition
based on Horn clauses

140

term(true).
term(false).
term(zero).
term(succ(T)) :- term(T).
term(pred(T)) :- term(T).
term(iszero(T)) :- term(T).
term(if(T1,T2,T3)) :- term(T1), term(T2), term(T3).

Effective as a 
syntax check
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Semantics of B and NB

• Big-step semantics

• Small-step semantics

• Some properties

• Normal forms / values

141
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Big-step semantics of B

142

Semantics

Evaluation relation with inference rules

Inference rules give a compact notation for defining the evaluation
relation (note that rules are often named)

B-True
true ⇓ true

B-False
false ⇓ false

B-IfTrue
t1 ⇓ true t2 ⇓ t�

2

if t1 then t2 else t3 ⇓ t�
2

B-IfFalse
t1 ⇓ false t3 ⇓ t�

3

if t1 then t2 else t3 ⇓ t�
3

Remember the implicit assumption: the evaluation relation is the
smallest set that satisfies the above set of inference rules

37 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Exercising the semantics

• Are these terms the same?

✦ if true then false else true 

✦ if false then true else (if true then false else true)

• In a syntactic sense? No.

• In a semantic sense? Perhaps?

143

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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 if true then false else true 
=	
 if false then true else (if true then false else true) ?

144

Semantics

Properties of the evaluation relation

Meaning of if true then true else false:

true ⇓ true B-True false ⇓ false B-False
if true then false else true ⇓ false

B-IfTrue

Meaning of if false then true else (if true then false else true):

false ⇓ false B-False
true ⇓ true B-True false ⇓ false B-False

if true then false else true ⇓ false
B-IfTrue

if false then true else (if true then false else true) ⇓ false
B-IfFalse

Note, that we gave no evaluation algorithm; just a declarative
definition of the relation.

Still, we know the result of any evaluator satisfying the relation
39 / 58
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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A property of the semantics

145

• Theorem: Evaluation is a total function.

• Proof:

✦ Lemma: Evaluation is deterministic.

✦ Lemma: Every term evaluates to something.

✦ Totality trivially follows.
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Induction

Example of structural induction

Lemma (Evaluation is deterministic)

E is a partial function. That is, if t ⇓ t1 and t ⇓ t2 then t1 = t2.

Proof.

By induction on t. Let P(t) def
= (t ⇓ t1 ∧ t ⇓ t2) =⇒ t1 = t2.

Base cases, Case: t = true. The only rule matching true is true ⇓ true, thus
P(true) holds. Case: t = false. Similar.
Case: t = if t1 then t2 else t3. From P(t1), if for all t �

1, t1 �⇓ t �
1, no rule

matches and thus P(t) holds vacuously. Assume then t1 ⇓ t �
1, which is unique by

P(t1).

1 If t �
1 = true and either t2 ⇓ t �

2 for some unique t �
2, or for all t �

2, t2 �⇓ t �
2. In

the first case, t ⇓ t �
2, in the second, for all t �, t �⇓ t �. P(t) thus holds.

2 If t �
1 = false similar.

3 If t �
1 is neither true or false, no rule applies and thus P(t) holds vacuously.

47 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Exercise 
for you



© Ralf Lämmel, 2009-2012 unless noted otherwise

Induction

Another example: prove that E is a total function

Lemma (Every term evaluates to something)

For all t ∈ B, there exists a term t� ∈ B, such that t ⇓ t�.

Proof.

By structural induction on t. Let’s make a slightly stronger induction hypothesis:
P(t) def

= (t ⇓ true ∨ t ⇓ false).
Cases: t = true, t = false. Trivial.
Case: t = if t1 then t2 else t3. By induction hypothesis either

t1 ⇓ true. Then further by i.h., either
t2 ⇓ true, and thus t ⇓ true, or
t2 ⇓ false, and thus t ⇓ false.

t1 ⇓ false. Then further by i.h., either
t3 ⇓ true, and thus t ⇓ true, or
t3 ⇓ false, and thus t ⇓ false.

Thus P(t) holds. As P implies the original property (t evaluates to some term), the lemma
follows.

49 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Exercise 
for you
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Recall syntax of the NB language

148

Syntax

Running example: language of arithmetic expressions

The following grammar defines a language for arithmetic expressions
t ::= terms:

true constant true
false constant false
if t1 then t2 else t3 conditional
0 constant zero
succ t successor
pred t predecessor
iszero t test for zero

Defines a set of terms, and t ranges over those terms
Item t is a metavariable

“Meta” because not a variable of the language being defined
Subscripts are used to denote different metavariables from the same
syntactic category

Term and expression mean the same thing for now
24 / 58

In order to define the evaluation relation for this 
language concisely, it is useful to define a few syntactic 
categories, and give them distinct metavariables.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Refined syntax definition
with categories of values

149

More than one syntactic category

Language NB

t ::= terms:
v value
if t1 then t2 else t3 conditional
succ t successor
pred t predecessor
iszero t test for zero

v ::= values:
true constant true
false constant false
nv numeric value

nv ::= numeric values:
0 zero value
succ nv successor value

54 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Big-step semantics of NB

150

More than one syntactic category

Evaluation rules

B-Value
v ⇓ v

N-Succ
t ⇓ nv

succ t ⇓ succ nv

N-IszeroZero
t ⇓ 0

iszero t ⇓ true

N-IszeroSucc
t ⇓ succ nv

iszero t ⇓ false

N-PredZero
t ⇓ 0

pred t ⇓ 0

N-PredSucc
t ⇓ succ nv
pred t ⇓ nv

B-IfTrue
t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

B-IfFalse
t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

55 / 58
The choices of metavariables are significant.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Small-step semantics of NB

151

Types for NB

Reminder NB evaluation rules

E-Iszero
t → t �

iszero t → iszero t �

E-IszeroZero
iszero 0→ true

E-IszeroSucc
iszero (succ nv)→ false

E-Succ
t → t �

succ t → succ t �

E-Pred
t → t �

pred t → pred t �

E-PredZero
pred 0→ 0

E-PredSucc
pred (succ nv)→ nv

E-IfTrue
if true then t2 else t3 → t2

E-IfFalse
if false then t2 else t3 → t3

E-If
t1 → t �

1

if t1 then t2 else t3 → if t �
1 then t2 else t3

14 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Do B’s properties carry over to NB?

152

More than one syntactic category

Revisiting the properties of B

Do the properties we proved for the language B hold for NB
(rewritten for this new language)?

Lemma ((?) Evaluation is deterministic)
Evaluation relation is a partial function. That is, if t ⇓ t1 and t ⇓ t2 then
t1 = t2.

Lemma ((?) Every term evaluates to something)

For all t ∈ NB, there exists a term t � ∈ NB, such that t ⇓ t �.

First one does
Second does not. Can you find a counterexample?
t = iszero true

57 / 58

Yes

No

Counter example for 2nd claim:
 iszero true

(So we are getting stuck.)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Type system

• Can’t we use syntax for typing?

• Components of a type system

✦ Types (type expressions) for NB

✦ Type relation for NB 

✦ Typing rules for NB

153

Think of a type 

as a set of 
terms.
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Syntactic categories as types

154

bterm(true).
bterm(false).
bterm(iszero(T)) :- nterm(T).

nterm(zero).
nterm(succ(T)) :- nterm(T).
nterm(pred(T)) :- nterm(T).

b ... boolean
n ... number

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

How to model “if”?
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Types in NB

155

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
Types for NB

NB typing rules

First, we need a few new syntactic forms
T ::= types:

Bool the Boolean type
Nat the type of numeric values

And typing rules:

T-True
true : Bool

T-False
false : Bool

T-If
t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

T-Zero
0 : Nat

T-Succ
t : Nat

succ t : Nat

T-Pred
t : Nat

pred t : Nat

T-Iszero
t : Nat

iszero t : Bool

15 / 28

Informally by saying “term t is of type T”, we imply that 
we can see (without evaluating t) that t evaluates to 

some normal form t’ which has type T.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Typing relation

156

Types for NB

Typing relation

The notation for t is of type T is:
t : T
or
t ∈ T
And more commonly:
Γ � t : T
where Γ is the context, or typing environment
For NB, elements of the typing relation are pairs, no typing
environment is necessary
Typing relation is commonly defined with inference rules

12 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

To be defined by 
typing rules

Not needed for NB 
(which has no names)



© Ralf Lämmel, 2009-2012 unless noted otherwise

NB typing rules

157

Types for NB

NB typing rules

First, we need a few new syntactic forms
T ::= types:

Bool the Boolean type
Nat the type of numeric values

And typing rules:

T-True
true : Bool

T-False
false : Bool

T-If
t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

T-Zero
0 : Nat

T-Succ
t : Nat

succ t : Nat

T-Pred
t : Nat

pred t : Nat

T-Iszero
t : Nat

iszero t : Bool

15 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

We say that a term t is typ(e)able, or well-
typed if there is some T such that t : T.
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Examples

158

• What are the types of these terms?

✦ succ (succ 0) 

✦ if iszero 0 then 0 else succ 0

✦ if iszero 0 then 0 else false

• Draw the derivation trees.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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succ (succ 0)

159

Types for NB

Derivations

succ(succ 0)

0 : Nat
succ 0 : Nat

T-Succ

succ (succ 0) : Nat
T-Succ

if iszero 0 then 0 else succ 0
0 : Nat T-Zero
iszero 0 : Bool

T-Succ
0 : Nat T-Zero

0 : Nat T-Zero
succ 0 : Nat

T-Succ

if iszero 0 then 0 else succ 0 : Nat
T-If

if iszero 0 then 0 else false Not well-typed!
0 : Nat T-Zero
iszero 0 : Bool

T-Succ
0 : T (?) false : T (?)

if iszero 0 then 0 else false : Nat
T-If

18 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Derivation 
tree

Types for NB

NB typing rules

First, we need a few new syntactic forms
T ::= types:

Bool the Boolean type
Nat the type of numeric values

And typing rules:

T-True
true : Bool

T-False
false : Bool

T-If
t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

T-Zero
0 : Nat

T-Succ
t : Nat

succ t : Nat

T-Pred
t : Nat

pred t : Nat

T-Iszero
t : Nat

iszero t : Bool

15 / 28

Typing 
rules
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if iszero 0 then 0 else succ 0

160

Types for NB

Derivations

succ(succ 0)

0 : Nat
succ 0 : Nat

T-Succ

succ (succ 0) : Nat
T-Succ
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iszero 0 : Bool
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0 : Nat T-Zero
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T-Succ
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18 / 28
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if iszero 0 then 0 else false

161

Types for NB

Derivations

succ(succ 0)

0 : Nat
succ 0 : Nat

T-Succ
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18 / 28
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Uniqueness of types

162

Properties of NB typing

Uniqueness of types

Theorem (Uniqueness of types)
No term has more than one type. That is, if t : T1 and t : T2, then
T1 = T2.

Proof.
By induction on the structure of t (using inversion lemma).

In fact, a stronger property holds for NB:

Theorem (Uniqueness of typing derivations)
If t : T1 and t : T2, then the typing derivations of t : T1 and t : T2 are
equal.

22 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

This is clearly a desirable property.
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Properties of NB typing

Uniqueness of types
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

See next slide.
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Inversion

164

Properties of NB typing

Inversion

The Inversion lemma reads the typing relation backwards, allowing us
to limit the possible types for many terms (by looking at their
top-level syntactic form)

Lemma (Inversion of typing relation)
1 If true : R, then R = Bool
2 If false : R, then R = Bool
3 If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3 : R.
4 If 0 : R, then R = Nat
5 If succ t1 : R, then R = Nat and t1 : Nat
6 If pred t1 : R, then R = Nat and t1 : Nat
7 If iszero t1 : R, then R = Bool and t1 : Nat

Proof.
Follows directly from the typing relation.

21 / 28
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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for you
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About uniqueness

165

• Uniqueness theorem does not hold for more complex languages.

• Consider, for example, a system with subtyping:

 class A { ... }; 

 class B extends A { ... }; 

 B b; // b has both type B and type A

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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A key property:
Type safety, aka soundness

166

• Definition (first attempt)

Each well-typed term evaluates to a value.

Evaluation does not get stuck.

• Challenges for this (simplified) definition

✦ Nontermination

✦ Disagreement between predicted and actual type 

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Type safety

• Type safety = progress + preservation

✦ Progress: 

A well typed term is either a value, or some evaluation rule applies.

✦ Preservation:

Evaluation relation preserves well-typedness of a term.
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Progress 
(first side of type safety)

168

Properties of NB typing

Progress

This is the first half or our main theorem

Theorem (Progress)

Assume t : T (i.e., t is well-typed). Then, either t is a value, or t → t � for
some t �.

Proof.
By induction on typing derivation t : T . Trivial if the last rule used is
T-True, T-False, or T-Zero (t is a value).
Case T-If: t is of the form if t1 then t2 else t3, where t1 : Bool, t2 : T ,
and t3 : T . By the induction hypothesis, t1, t2, and t3 each either are
values or evaluate (respectively) to some terms t �

1, t �
2, and t �

3. If t1 is a
value, from the canonical forms lemma we see it must be either true or
false, and thus either t → t2 or t → t3 using E-IfTrue or E-IfFalse. If
t1 → t �

1, then t → if t �
1 then t2 else t3 by E-If.
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Types for NB

NB typing rules

First, we need a few new syntactic forms
T ::= types:

Bool the Boolean type
Nat the type of numeric values

And typing rules:

T-True
true : Bool

T-False
false : Bool

T-If
t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

T-Zero
0 : Nat

T-Succ
t : Nat

succ t : Nat

T-Pred
t : Nat

pred t : Nat

T-Iszero
t : Nat

iszero t : Bool

15 / 28

Recall

Types for NB

Reminder NB evaluation rules

E-Iszero
t → t �

iszero t → iszero t �

E-IszeroZero
iszero 0→ true

E-IszeroSucc
iszero (succ nv)→ false

E-Succ
t → t �

succ t → succ t �

E-Pred
t → t �

pred t → pred t �

E-PredZero
pred 0→ 0

E-PredSucc
pred (succ nv)→ nv

E-IfTrue
if true then t2 else t3 → t2

E-IfFalse
if false then t2 else t3 → t3

E-If
t1 → t �

1

if t1 then t2 else t3 → if t �
1 then t2 else t3
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Canonical forms

169

This lemma allows us to limit the shapes of terms 
(in fact, terms that are values) of different types.

Properties of NB typing

Canonical forms

This lemma allows us to limit the shapes of terms of different types

Lemma (Canonical forms)
1 If v is a value and has type Bool, then v is either true or false.
2 If v is a value and has type Nat, then v is a numeric value as specified

in our grammar.

Proof.
Immediate from the grammar and inversion lemma.
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Progress cont’d

170

Properties of NB typing

Progress

This is the first half or our main theorem

Theorem (Progress)
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some t �.

Proof.
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Properties of NB typing

... Progress

Theorem (Progress)

Assume t : T (i.e., t is well-typed). Then, either t is a value, or t → t � for
some t �.

Proof.
Case T-Pred: t is of the form pred t1, where t1 : Nat. By the induction
hypothesis, t1 is either a value or evaluates to some term t �

1. If t1 is a value,
from the canonical forms lemma we see it must be a numeric value, and
thus either t1 = 0 or t1 = succ nv . If t1 = 0, then t = pred 0→ 0 using
the rule E-PredZero. If t1 = succ nv , then t = pred (succ nv)→ nv .
If t1 → t �

1, then rule E-Pred applies and t = pred t1 → pred t �
1.

Case T-Succ: Exercise.
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Preservation (second side of type safety)

171

• Preservation theorem is also known as subject reduction:

• For NB, we can prove a stronger preservation theorem:

Properties of NB typing

The second part: Preservation

Theorem (Preservation of well-typedness)

If t : T and t → t �, then t � : T �, for some T �.

For NB, we can prove a stronger preservation theorem:

Theorem (Preservation of typing)

If t : T and t → t �, then t � : T.

Preservation theorem is also known as subject reduction
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Proof of 
preservation property

172

Properties of NB typing

... Preservation

Theorem (Preservation of typing)

If t : T and t → t �, then t � : T.

Proof.

By induction on typing derivation t : T .

Vacuously true for T-True, T-False, and T-Zero.

Case T-If: t is of the form if t1 then t2 else t3, where t1 : Bool, t2 : T ,

and t3 : T . There are three possible rules for t → t �:

1 If t1 = true, by E-IfTrue t evaluates to t2 which is of type T .

2 If t1 = false, by E-IfFalse t evaluates to t3 which has type T .

3 Otherwise E-If must apply and t1 → t �
1 for some t �

1. By induction

hypothesis, t �
1 is of the same type as t1: type Bool. Thus

t � = if t �
1 then t2 else t3, where t �

1 : Bool, t2 : T , and t3 : T . The

type of this t � is thus T .

Cases T-Pred and T-Succ: Exercise.
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• Summary: Type systems
✦ Reject meaningless programs.
✦ Use a rule-based specification, again.
✦ Type safety relates semantics and type system.

• Prepping: “Types and Programming Languages”
✦ Chapters 1, 3 and 8

• Outlook:
✦ The lambda calculus
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