$x=1$

Resources:The slides of this lecture were derived from
[Järvi], with permission of the original author, by copy \& paste or by selection, annotation, or rewording. [Järvi] is in
let $x=1$ in ...

$$
x(1)
$$

! $x(1)$

$x . \operatorname{set}(1)$

Programming Language Theory

The Untyped Lambda Calculus

Ralf Lämmel

What's the lambda calculus?

- It is the core of functional languages.
- ...

What's the lambda calculus?

- It is the core of functional languages.
- It is a mathematical system for studying programming languages.
+ design, specification, implementation, type systems, et al.
- It comes in variations of typing: implicit/explicit/none.
- Formal systems built on top of simply typed lambda calculus:
+ System F - for studying polymorphism
+ System $\mathrm{F}_{<}$: - for studying subtyping

Language constructs

- Abstract syntax:

$$
M::=x|M M| \lambda x \cdot M
$$

- M is a lambda term.
- An infinite set of variables x, y, z, \ldots is assumed.
- $\mathrm{M} N$ is an application.

Function M is applied to the argument N.

- $\lambda x . M$ is an abstraction.

The resulting function maps x to M.
Lambda functions are anonymous.

Computability theory

- Church's thesis:

All intuitively computable functions are $\boldsymbol{\lambda}$-definable.

- An established equivalence of notions of computability:

> Set of Lambda-definable functions
$=$ Set of Turing-computable functions

Syntax and semantics

- Syntax

$$
\begin{array}{rlr}
t:: & =x & \\
& \lambda x . t \quad \text { Terms } \\
& t t &
\end{array}
$$

$v::=\lambda x . t \quad$ Values (normal forms)

- Evaluation

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \frac{t \rightarrow t^{\prime}}{v t \rightarrow v t^{\prime}} \\
(\lambda x . t) v \rightarrow[v / x] t
\end{gathered} \begin{gathered}
\text { Reduce function } \\
\text { position, then reduce } \\
\text { argument position }, \\
\text { then apply. }
\end{gathered}
$$

Syntactic sugar and conventions

- $M N_{1} \ldots N_{k}$ means (...((M N 1$\left.\left.) N_{2}\right) \ldots N_{k}\right)$.

Function application groups from left to right.

- $\boldsymbol{\lambda} x \cdot x$ y means $(\boldsymbol{\lambda} x .(x y))$.

Function application has higher precedence.

- $\boldsymbol{\lambda} x_{1} x_{2} \ldots x_{k} \cdot M$ means $\left.\boldsymbol{\lambda} x_{1} \cdot\left(\boldsymbol{\lambda} x_{2} \cdot\left(\ldots\left(\lambda x_{k} \cdot(M)\right) \ldots\right)\right)\right)$.

Variable binding

- $\boldsymbol{\lambda}$ is a binding operator:

It binds a variable in the scope of the lambda abstraction.

- Examples:
$+\lambda x . M \quad x$ is bound (in the lambda abstraction)
+ $\lambda x \cdot x y \quad y$ is not bound (in the lambda abstraction).
- If a variable occurs in an expression without being bound, then it is called a free occurrence, or a free variable. Other occurrences of variables are called bound.
- A closed term is one without free variable occurrences.

Variable binding - precise definition

$\mathrm{FV}(M)$ defines the set of free variables in the term M

$$
\mathrm{FV}(x)=\{x\}
$$

$$
\mathrm{FV}(M N)=\mathrm{FV}(M) \cup \mathrm{FV}(N)
$$

$$
\mathrm{FV}(\lambda x \cdot M)=\mathrm{FV}(M) \backslash\{x\}
$$

Exercise: what are the free and bound variable occurrences in these terms?

$$
\begin{aligned}
& (\lambda x \cdot y)(\lambda y \cdot y) \\
& \lambda x \cdot(\lambda y \cdot x y) y
\end{aligned}
$$

Substitution and β-equivalence

- Computation for the $\boldsymbol{\lambda}$-calculus is based on substitution.
- Substitution is defined by the equational axiom:

$$
(\lambda x \cdot M) N=[N / x] M
$$

The terms on both sides are also called β-equivalent.

- Think of substitution as invoking a function:
$\star(\boldsymbol{\lambda} \times . M)$ is the function,
$\star N$ is the argument,
« Substitution takes care of parameter passing.

$\boldsymbol{\alpha}$-equivalence and conversion

- Names of bound variable are insignificant.
$\lambda x \cdot x$ defines the same function as $\lambda y \cdot y$
- Suppose two terms differ only on the names of bound variables.

Then, they are said to be $\boldsymbol{\alpha}$-equivalent ($=\boldsymbol{\alpha}$).

- Equational axiom:
$\lambda x \cdot M=\lambda y \cdot[y / x] M$

and substitution applies to free occurrences only.

Reduction $M \rightarrow N$

- Computation ($\boldsymbol{\rightarrow}$) with the lambda calculus is then a series of
+ β-reductions, and

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \frac{t \rightarrow t^{\prime}}{v t \rightarrow v t^{\prime}} \\
\quad(\lambda x . t) v \rightarrow[v / x] t
\end{gathered}
$$

+ ("implicit") $\boldsymbol{\alpha}$-conversions.
- Reflexive, transitive closure
- $M \rightarrow{ }^{*} N$ means M reduces to N in zero or more steps.

Inductive definition of substitution

$[N / x] x=N$
$[N / x] y=y, y$ any variable different from x $[N / x]\left(M_{1} M_{2}\right)=\left([N / x] M_{1}\right)\left([N / x] M_{2}\right)$
$[N / x](\lambda x \cdot M)=\lambda x \cdot M$
$[N / x](\lambda y \cdot M)=\lambda y \cdot([N / x] M), y$ not free in N

Examples $[z / x] x \quad z$

Properties of reduction (i.e., semantics)

- How do we select redexes for reduction steps?
- Does the result depend on such a choice?
- Does reduction ultimately terminate with a normal form?

This slide is derived from Jaakko Järvi's slides for his course "Programming Languages", CPSC 604 @ TAMU.

Illustration of different reductions (We assume natural numbers with "'+".)

Option I	Option 2
$\left.\underline{\lambda} \boldsymbol{f} \cdot \lambda_{x} . f(f x)\right)\left(\lambda_{y \cdot y}+1\right) 2$	$(\lambda f \cdot \lambda x \cdot f(f x))\left(\lambda_{y \cdot y}+1\right) 2$
$\rightarrow \quad\left(\lambda x \cdot\left(\lambda_{y \cdot y}+1\right)((\lambda y \cdot y+1) x)\right) 2$	$\rightarrow \quad\left(\lambda x \cdot\left(\lambda_{y \cdot y}+1\right)\left(\left(\lambda_{y \cdot y}+1\right) x\right)\right) 2$
$\rightarrow \quad(\lambda x \cdot(\lambda y \cdot y+1)(x+1) 2$	$\rightarrow \quad(\lambda y \cdot y+1)((\lambda y \cdot y+1) 2)$
$\rightarrow \quad(\lambda x .(x+1+1))^{2}$	\rightarrow
$\rightarrow \quad(2+1+1)$	\rightarrow...
$\rightarrow 4$	$\rightarrow 4$

Confluence

- Confluence: evaluation strategy is not significant for final value.
- That is: there is (at most) one normal form of a given expression.

[http://en.wikipedia.org/wiki/Church-Rosser_theorem]

¿onfluence

- $M \rightarrow{ }^{*} N$ means M reduces to N in zero or more steps.
- Confluence

$$
\text { If } M \rightarrow{ }^{*} N \text { and } M \rightarrow{ }^{*} N^{\prime} \text {, }
$$

then there exists some P
such that $N \rightarrow{ }^{*} P$ and $N^{*} \rightarrow{ }^{*} P$.

Strong normalization property of a calculus with reduction

- Definition:

For every term M there is a normal form N such that $M \rightarrow{ }^{*} N$.

- Strong normalization properties for lambda calculi:
- Untyped lambda calculus: no $(\lambda x \cdot x x)(\lambda x \cdot x x)$
+ Simply-typed lambda calculus: yes

Evaluation/reduction strategies

+ Full beta reduction

Reduce anywhere.

Reduce argument before applying function.

+ Normal order ("reduce the leftmost outermost redex")

Apply function before reducing argument.
http://en.wikipedia.org/wiki/Evaluation strategy

Extension vs. encoding

- Typical extensions
(giving rise to so-called applied lambda calculi)
- Primitive types (numbers, Booleans, ...)
- Type constructors (tuples, records, ...)
- Recursive functions
- Effects (cell, exceptions, ...)
- Many extensions can be encoded in theory in terms of pure lambda calculus, except that such encoding is somewhat tedious.

Church Booleans

- Encodings of literals
+ true $=\lambda_{t} \boldsymbol{\lambda}_{\text {f.t }}$
- false $=\boldsymbol{\lambda} t . \boldsymbol{\lambda} f . f$
- Conditional expression (if)
- Expectations
\star test $b \vee w \rightarrow^{*} v$, if $b=$ true
\star test $b \vee w \rightarrow{ }^{*} w$, if $b=$ false
- Encoding
\star test $=\boldsymbol{\lambda} . \boldsymbol{\lambda} m . \boldsymbol{\lambda} \mathrm{n} . \mathrm{I} \mathrm{m} n$

This slide is derived from Jaakko Järvi's slides for his course "Programming Languages", CPSC 604 @ TAMU.

($\boldsymbol{\lambda}\left(\boldsymbol{\lambda} m . \boldsymbol{\lambda}_{n . I m} \mathrm{n}\right.$) true $v w$

$$
\begin{aligned}
& \rightarrow(\lambda m . \lambda n . t r u e \\
& \rightarrow(\lambda n . t r u e \vee n) \\
& \rightarrow \text { true } \vee w \\
& \rightarrow\left(\lambda_{t} \cdot \lambda . t\right) \vee w \\
& \left.\rightarrow \lambda_{f . v}\right) w \\
& \rightarrow v
\end{aligned}
$$

Church pairs

- A Boolean value picks either the Ist or the 2 nd value of the pair.
- Construction and projections
${ }^{+}$pair $=\lambda f \cdot \lambda s . \lambda b . b f s$
- first $=\lambda p . p$ true
+ second $=\lambda$ p.p false

Church numerals

- Encodings of numbers
+ $c 0=\lambda s . \lambda z . z$
$+c 1=\lambda s . \lambda z . s z$
+ $c 2=\lambda s . \lambda z . s(s z)$
$+c 3=\lambda s . \lambda z . s(s(s z))$

A numeral n is a lambda abstraction that is parameterized by a case for zero, and a case for succ. In the body, the latter is applied n times to the former. This caters for primitive recursion.

- Encodings of functions on numbers
+ succ $=\boldsymbol{\lambda} n . \lambda s . \lambda z . s(n \mathrm{~s} \mathrm{z})$
- plus $=\lambda m \cdot \lambda n \cdot \lambda s . \lambda z . m$ s (n s z)
+ times $=\boldsymbol{\lambda} m \cdot \boldsymbol{\lambda} n \cdot m$ (plus n) c0

Recursive functions

- Let us define the factorial function.
- Suppose we had "recursive function definitions".
$f \equiv \lambda n$. if $n==0$ then \mid else $n^{*} f(n-1)$
- Let us do such recursion with anonymous functions.
- Fixed point combinators to the rescue!

Fixed points

- Consider a function $f: X \rightarrow X$.
- A fixed point of f is a value z such that $z=f(z)$.
- A function may have none, one, or multiple fixed points.
- Examples (functions and sets of fixed points):
- $f(x)=2 x$
$\{0\}$
- $f(x)=x$
$\{0,1, \ldots\}$
$+f(x)=x+1$
\varnothing

Fixed point combinators

We call Y a fixed-point combinator
if it satisfies the following definitional property:
For all $f: X \rightarrow X$ it holds that $\mathbf{Y} f=f(\mathbf{Y} f)$

Defining factorial as a fixed point

- Start from a recursive definition.
$f \equiv \lambda n$. if $n==0$ then \mid else $n^{*} f(n-1)$
- Eliminate self-reference; receive function as argument.
$g \equiv \boldsymbol{\lambda} \boldsymbol{h} \cdot \boldsymbol{\lambda} n$.if $n==0$ then \mid else $n * \boldsymbol{h}(n-1)$
$\star g$ takes a function (h) and returns a function.
- Define f as a fixed point.
$f \equiv \mathbf{Y} g$

Fixed points cont'd

Exercise for you!

- For example, apply definitional property to factorial g :

```
                                    \((Y g) 2\)
\(=[Y\) def. prop. \(] \quad g(Y g) 2<\) This is as if we had extended evaluation.
\(=[\) unfold \(g] \quad \boldsymbol{\lambda} h . \boldsymbol{\lambda} n\).if \(n==0\) then 1 else \(n * h(n-1))(Y g) 2\)
\(=\left[\right.\) beta reduce \(\quad \lambda\) n.if \(n==0\) then 1 else \(\left.n^{*}((Y g)(n-1))\right) 2\)
\(=[\) beta reduce] if \(2==0\) then 1 else \(2 *((Y g)(\underline{2-1}))\)
\(=[\) ""-" reduce] if \(2==0\) then 1 else \(2 *((Y \mathrm{~g})(1))\)
\(=[" i f "\) reduce \(] \quad 2 *((Y g)(I))\)
\(=\quad 2\)

This slide is derived from Jaakko Järvi's slides for his course "Programming Languages", CPSC 604 @ TAMU.

\section*{A lambda term for \(\boldsymbol{Y}\)}
- One option:
\[
Y=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
\]

- Verification of the definitional property:
\[
Y g=g(Y g)
\]
- Proof:

\section*{Exercise for you!}
\[
\begin{array}{ll}
=[\text { unfold } Y] & \frac{\mathbf{Y} \mathbf{g}}{(\boldsymbol{\lambda} f .(\boldsymbol{\lambda} x . f(x x))(\boldsymbol{\lambda} x . f(x x))) g} \\
=[\text { beta reduce }] & (\boldsymbol{\lambda} \cdot g(x x))(\boldsymbol{\lambda} x \cdot g(x x))) \\
=[\text { beta reduce }] & g((\boldsymbol{\lambda} \cdot g(x x))(\boldsymbol{\lambda} \times . g(x x))) \\
=[\text { fold } Y] & \mathbf{g}(\mathbf{Y} \mathbf{g})
\end{array}
\]

\title{
Prolog as a sandbox for semantics of lambda calculi
}

\section*{Untyped NB}
https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/nb/

\section*{Syntax of \(N B\)}


\section*{Syntax of NB}
term \((\mathrm{V})\) :- value \((\mathrm{V})\).
term(if(TI,T2,T3)) :- term(TI), term(T2), term(T3).
term \((\operatorname{succ}(T)):-\operatorname{term}(T)\).
term(pred(T)) :- term(T).
term(iszero( \(T\) )) :- term \((T)\).
value(true).
value(false).

We are faithful to the distinction of the
syntactical categories.
value(NV) :- nvalue(NV).
nvalue(zero).
nvalue(succ(NV)) :- nvalue(NV).

\section*{NB: sample terms}
supposed to evaluate to 0
if(iszero(pred(succ(zero))),zero,succ(succ(zero))).


This slide is derived from Jaakko Järvi's slides for his course "Programming Languages", CPSC 604 @ TAMU.

\section*{Evaluation rules of \(N B\)} (SOS)
E-Iszero
\(t \rightarrow t^{\prime}\)
iszero \(t \rightarrow\) iszero \(t^{\prime}\)

\section*{E-IszeroZero \\ iszero \(0 \rightarrow\) true}

E-IszeroSucc
iszero (succ nv) \(\rightarrow\) false

E-Succ
\(t \rightarrow t^{\prime}\)
\(\overline{\operatorname{succ} t \rightarrow \operatorname{succ} t^{\prime}}\)

E-Pred
\(t \rightarrow t^{\prime}\) pred \(t \rightarrow\) pred \(t^{\prime}\)

E-PredZero pred \(0 \rightarrow 0\)

Exercise: what happens to our type system when we omit the rule?
```

 E-PredSucc
 pred (succ nv) }->n

```

E-IfFalse
if false then \(t_{2}\) else \(t_{3} \rightarrow t_{3}\)
E-If
\(\frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \rightarrow \text { if } t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}}\)

\section*{Evaluation rules of \(N B\) (SOS)}
\% eval(pred(zero),zero). Disfavored semantics
eval(pred(succ(NV)),NV) :- nvalue(NV).
eval(succ(TI),succ(T2)) :- eval(TI,T2).
eval(pred(TI),pred(T2)) :- eval(TI,T2).
eval(iszero(zero),true).
eval(iszero(succ(NV)),false) :- nvalue(NV).
Note: appearances of metavariables in SOS translate into tests for values.
eval(iszero(TI),iszero(T2)) :- eval(TI,T2).
eval(if(true,T2,_),T2).
eval(ff(false,_T3),T3).
eval(if(TI,T2,T3),if(T4,T2,T3)) :- eval(TI,T4).

\section*{Reflexive, transitive closure}
```

manysteps(V,V) :- value(V).
manysteps(TI,V) :- eval(TI,T2), manysteps(T2,V).

```

This is like \(\rightarrow\) * in the formal setup, and the predicate works for any language with a binary reduction relation eval/2.

\section*{Composing everything}
:- [...]. \% Import syntax and semantics
:- [...]. \% Import main predicate
:-
current_prolog_flag(argv,Argv),
( append(_,['--',lnput],Argv), main(lnput), halt; true ).


\section*{main(Input)}
:-
see(Input), read(Term), seen, format('Input term: \(\sim w \sim n ',[\) Term]), manysteps(Term, \(X\) ), show ( \(X, Y\) ), format('Value of term: \(\sim w \sim n ',[Y])\).
```

show(zero,0) :- !.
show(succ}(X),Z) :- !, show (X,Y),Z is Y + I.
show(X,X).

```

\section*{Running the \(N B\) interpreter}
\$ swipl -q -f main.pro -- ../samples/sample I.nb Input term: if(iszero(pred(succ(zero))),zero,succ(succ(zero))) Value of term: 0
\$

\section*{The untyped lambda calculus}
https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/

\section*{Formalization of the lambda calculus}
- Syntax
\[
\begin{array}{rlrl}
t:: & = & x & \\
& & & x . t \\
& t t & & \\
& & \\
v:: & & \lambda x . t \quad & \\
& \text { Values (normal forms) }
\end{array}
\]
- Evaluation
\[
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \frac{t \rightarrow t^{\prime}}{v t \rightarrow v t^{\prime}} \\
\quad(\lambda x . t) v \rightarrow[v / x] t
\end{gathered}
\]

\section*{Syntax of the untyped lambda calculus}
term \((\operatorname{var}(X))\) :- variable(X).
term(app(TI,T2)) :- term(TI), term(T2).
term \((\operatorname{lam}(X, T))\) :- variable \((X)\), term \((T)\).
value \((\operatorname{lam}(X, T))\) :- variable \((X)\), term \((T)\).
variable \((X)\) :- atom \((X)\).
Variables are
Prolog atoms.

\section*{\(\boldsymbol{\lambda}\) : sample term}
app(app(app( \%TEST (if-then-else)
\(\operatorname{lam}(1, \operatorname{lam}(m, \operatorname{lam}(n, \operatorname{app}(\operatorname{app}(\operatorname{var}(l), \operatorname{var}(m)), \operatorname{var}(n)))))\),
\% Church Boolean True \(\operatorname{lam}(\mathrm{t}, \operatorname{lam}(\mathrm{f}, \mathrm{var}(\mathrm{t}))))\), \% Church Numeral 0 \(\operatorname{lam}(\mathrm{s}, \operatorname{lam}(\mathrm{z}, \mathrm{var}(\mathrm{z}))))\), We illustrate Church Booleans and numerals. That is, we use a conditional (TEST) to select either CO or Cl .
\% Church Numeral I
\(\operatorname{lam}(\mathrm{s}, \operatorname{lam}(z, a p p(\operatorname{var}(s), \operatorname{var}(z)))))\).

\section*{Evaluation rules of the untyped lambda calculus}

\author{
eval(app(TI,T2),app(T3,T2)) :eval(TI,T3). \\ eval(app(V,TI),app(V,T2)) :value(V), eval(TI,T2).
}

Substitution (as needed for beta reduction) is the interesting part--both in the formal setting. and in Prolog.
eval(app(lam(X,TI),V),T2) value(V), substitute(V,X,TI,T2).

\section*{SubStitution}
\[
[N / x] x=N
\]
\([N / x] y=y, y\) any variable different from \(x\)
\([N / x]\left(M_{1} M_{2}\right)=\left([N / x] M_{1}\right)\left([N / x] M_{2}\right)\)
\([N / x](\lambda x . M)=\lambda x . M\)
\([N / x](\lambda y \cdot M)=\lambda y .([N / x] M), y\) not free in \(N\)
FV \((M)\) defines the set of free variables in the term \(M\)
\[
\mathrm{FV}(x)=\{x\}
\]
\(\mathrm{FV}(M N)=\mathrm{FV}(M) \cup \mathrm{FV}(N)\)
\(\mathrm{FV}(\lambda x . M)=\mathrm{FV}(M) \backslash\{x\}\)

\section*{Substitution I/3}
substitute \((\mathrm{N}, \mathrm{X}, \mathrm{var}(\mathrm{X}), \mathrm{N})\).
substitute(_,X,var(Y),var(Y))
\[
1+X==Y
\]

The simple cases
substitute(N,X,app(MI,M2),app(M3,M4))
:-
substitute(N,X,MI,M3), substitute(N,X,M2,M4).
substitute(_,X,lam(X,M),lam(X,M)).

\section*{Substitution 2/3}

\section*{substitute(N,X,lam(Y,MI),lam(Y,M2))}

\author{
:- \\ \(1+X==Y\), freevars( \(\mathrm{N}, \mathrm{Xs}\) ), I+ member(Y,Xs), substitute(N,X,MI,M2).
}

Push down substitution into the body of the lambda abstraction if its bound variable \(Y\) does not occur freely in the target expression N .

\section*{Substitution 3/3}

\section*{substitute(N,X,lam(Y,MI),lam(Z,M3))}
:-
\(1+X==Y\), freevars( \(\mathrm{N}, \mathrm{Xs}\) ), member( \(\mathrm{Y}, \mathrm{X} \mathrm{s}\) ), freshvar(Xs,Z), substitute(var(Z),Y,MI,M2), substitute(N,X,M2,M3).

If \(Y\) occurs freely in \(N\), then we need to perform alpha conversion for Y. Hence, we find a fresh variable and convert the body MI before we continue with the original substitution.

\section*{Free variables}

\section*{freshvar(Xs,X)}
:-
freshvar \((X s, X, 0)\).
freshvar(Xs,N,N)
:-
I+ member(N,Xs).
freshvar(Xs,X,NI)
We use numbers as generated variables. We find the smallest number \(X\) that is not in \(X\) s.
:-
member( \(\mathrm{Nl}, \mathrm{Xs}\) ),
N 2 is \(\mathrm{NI}+\mathrm{I}\), freshvar \(\left(X_{s}, \mathrm{X}, \mathrm{N} 2\right)\).

\section*{An applied, untyped lambda calculus}
https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/

\section*{Syntax of}

\section*{the applied, untyped lambda calculus}
:- multifile term/I.
:- ['../untyped/term.pro'].
:- ['.././nb/untyped/term.pro'].
:- multifile value/I.
:- ['../untyped/value.pro'].
:- ['.././/nb/untyped/value.pro'].

We merge the syntax of NB and lambda calculus. In this manner, we get an applied lambda calculus (with all the applied bits of NB).

\section*{\(\boldsymbol{\lambda}\) : sample term}

\% Twice function
lam \((f, \operatorname{lam}(x, a p p(\operatorname{var}(f), a p p(\operatorname{var}(f), \operatorname{var}(x)))))\),
\% Increment function
\(\operatorname{lam}(x, \operatorname{succ}(\operatorname{var}(x))))\),
\% 2
succ(succ(zero))).

\section*{\(\boldsymbol{\lambda}\) : sample term}
app (app (
\% CBV fixed point combinator lam(f,app(

\(l a m(x, a p p(\operatorname{var}(f), l a m(y, a p p(a p p(\operatorname{var}(x), \operatorname{var}(x)), \operatorname{var}(y)))))\), \(l \operatorname{am}(x, \operatorname{app}(\operatorname{var}(f), \operatorname{lam}(y, \operatorname{app}(\operatorname{app}(\operatorname{var}(x), \operatorname{var}(x)), \operatorname{var}(y)))))))\),
\% iseven
lam(e,lam(x,if(
iszero( \(\operatorname{var}(x)\) ),
true,
if(
iszero(pred \((\operatorname{var}(x)))\),
false,
app(var(e),pred(pred(var(x))))))))),
\% Argument to be tested succ(succ(succ(zero)))
).

\section*{Evaluation rules \\ the applied, untyped lambda calculus}
:- multifile eval/2.
:- multifile substitute/4.
:- multifile freevars/2.
:- ['../untyped/eval.pro'].
:- ['../../nb/untyped/eval.pro'].
:- ['substitute.pro'].
:- ['freevars.pro'].

Essentially, we merge the evaluation rules for NB and the untyped lambda calculus. However, we also need to upgrade substitution to cope with NB's construct.

\section*{Substitution for applied part}
```

substitute(_,_,true,true).
substitute(_,_,false,false).
substitute(_,_,zero,zero).
substitute(N,X,succ(TI),succ(T2)) :- substitute(N,X,TI T2).
substitute(N,X,pred(TI),pred(T2)) :- substitute(N,X,T। T2).
substitute(N,X,iszero(TI),iszero(T2)) :- substitute(N,X,T। T2).
substitute(N,X,if(Tla,T2a,T3a),if(Tlb,T2b,T3b))
:-
substitute(N,X,Tla,Tlb),
substitute(N,X,T2a,T2b),
substitute(N,X,T3a,T3b).

Free variables for applied part

```
freevars(true,[]).
freevars(false,[).
freevars(zero,[]).
freevars(succ(T),FV) :- freevars(T,FV).
freevars(pred(T),FV) :- freevars(T,FV).
freevars(iszero(T),FV) :- freevars(T,FV).
freevars(if(TI,T2,T3),FV) :-
    freevars(TI,FVI),
    freevars(T2,FV2),
    freevars(T3,FV3),
    union(FVI,FV2,FVI2),
    union(FVI2,FV3,FV).
```

- Summary: The untyped lambda calculus
+ A concise core of functional programming.
+ A foundation of computability.
+ A Prolog model is again straightforward.
- Prepping: "Types and Programming Languages"
+ Chapter 5
- Outlook:
+ The simply-typed lambda calculus

