
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

The Untyped Lambda Calculus

Ralf Lämmel

Programming Language Theory

Resources: The slides of this lecture were derived from
[Järvi], with permission of the original author, by copy &
paste or by selection, annotation, or rewording. [Järvi] is in
turn based on [Pierce] as the underlying textbook.

[Järvi] Slides by J. Järvi: “Programming Languages”, CPSC 604 @ TAMU (2009)
[Pierce] B.C. Pierce: Types and Programming Languages, MIT Press, 2002

© Ralf Lämmel, 2009-2012 unless noted otherwise

What’s the lambda calculus?

• It is the core of functional languages.

• ...

175

Introduction

Examples

Some lambda terms

x
λx .x
λf .λg .λx .f (g x)

Compare lambda and, say, Haskell constructs:

λx .M (\x → M)

Aside: where does the λ (lambda) come from ?

7 / 36

The identity function

Function composition

© Ralf Lämmel, 2009-2012 unless noted otherwise

What’s the lambda calculus?

• It is the core of functional languages.

• It is a mathematical system for studying programming languages.

✦ design, specification, implementation, type systems, et al.

• It comes in variations of typing: implicit/explicit/none.

• Formal systems built on top of simply typed lambda calculus:

✦ System F — for studying polymorphism

✦ System F<: — for studying subtyping

✦ ...

176

© Ralf Lämmel, 2009-2012 unless noted otherwise

Language constructs

177

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Abstract syntax:

	
 	
 	
 	
 	
 	
 	
 M ::= x | M M | λx.M

• M is a lambda term.

• An infinite set of variables x, y, z, . . . is assumed.

• M N is an application.

Function M is applied to the argument N.

• λx.M is an abstraction.

The resulting function maps x to M.

Lambda functions are anonymous.

© Ralf Lämmel, 2009-2012 unless noted otherwise 178

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Church’s thesis:

All intuitively computable functions are λ-definable.

• An established equivalence of notions of computability:

	
 Set of Lambda-definable functions

= 	
 Set of Turing-computable functions

Computability theory

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntax and semantics

• Syntax

• Evaluation

179

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

Terms

Values (normal forms)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Reduce function
position, then reduce
argument position,

then apply.

A term that
cannot be

reduced further.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntactic sugar and conventions

180

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• M N1 ...Nk	
means (...((M N1) N2) ... Nk).

Function application groups from left to right.

• λx.x y means (λx.(x y)).

Function application has higher precedence.

• λx1x2 . . . xk. M means λx1.(λx2.(...(λxk .(M)) . . .))).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Variable binding

181

• λ is a binding operator:

It binds a variable in the scope of the lambda abstraction.

• Examples:

✦ λx.M 	
 	
 x is bound (in the lambda abstraction)

✦ λx.x y	
	
 y is not bound (in the lambda abstraction).

• If a variable occurs in an expression without being bound,
then it is called a free occurrence, or a free variable.
Other occurrences of variables are called bound.

• A closed term is one without free variable occurrences.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Variable binding — precise definition

182

Introduction

Variable binding — precise definition

FV(M) defines the set of free variables in the term M

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx .M) = FV(M) \ {x}

Spot free and bound occurrences here:

(λx .y)(λy .y)

λx .(λy .x y)y

Combinator — a term with no free variables (also closed term)
9 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Exercise: what are the free and bound
variable occurrences in these terms?

183

Introduction

Variable binding — precise definition

FV(M) defines the set of free variables in the term M

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx .M) = FV(M) \ {x}

Spot free and bound occurrences here:

(λx .y)(λy .y)

λx .(λy .x y)y

Combinator — a term with no free variables (also closed term)
9 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Introduction

Variable binding — precise definition

FV(M) defines the set of free variables in the term M

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx .M) = FV(M) \ {x}

Spot free and bound occurrences here:

(λx .y)(λy .y)

λx .(λy .x y)y

Combinator — a term with no free variables (also closed term)
9 / 36

© Ralf Lämmel, 2009-2012 unless noted otherwise

Substitution and β-equivalence
• Computation for the λ-calculus is based on substitution.

• Substitution is defined by the equational axiom:

(λx.M)N = [N/x]M

• Think of substitution as invoking a function:

★ (λx.M) is the function,
★ N is the argument,
★ Substitution takes care of parameter passing.

184

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

The terms on both
sides are also called
β-equivalent.

Redex “→” direction = β-reduction

© Ralf Lämmel, 2009-2012 unless noted otherwise

α-equivalence and conversion

185

• Names of bound variable are insignificant.

λx.x defines the same function as λy.y

• Suppose two terms differ only on the names of bound variables.

Then, they are said to be α-equivalent (=α).

• Equational axiom:

λx.M = λy.[y/x]M

where y does not appear in M

and substitution applies to free occurrences only.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Performing such
renaming is also

called α-conversion.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Reduction M→N

186

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Computation (→) with the lambda calculus is then a series of

✦ β-reductions, and

✦ (“implicit”) α-conversions.

• Reflexive, transitive closure

• M →* N means M reduces to N in zero or more steps.

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

© Ralf Lämmel, 2009-2012 unless noted otherwise

Inductive definition of substitution

187

Introduction

Inductive definition of substitution in λ calculus

[N/x]x = N
[N/x]y = y , y any variable different from x
[N/x](M1 M2) = ([N/x]M1) ([N/x]M2)

[N/x](λx .M) = λx .M
[N/x](λy .M) = λy .([N/x]M), y not free in N

Alpha renaming can be applied freely, variables drawn from the infinite
pool of variable names
Examples:

[z/x]x
[z/x](λx .x x)

[z/x](λy .y x)

[z/x](λz .x z)

12 / 36

Examples

Introduction

Inductive definition of substitution in λ calculus

[N/x]x = N
[N/x]y = y , y any variable different from x
[N/x](M1 M2) = ([N/x]M1) ([N/x]M2)

[N/x](λx .M) = λx .M
[N/x](λy .M) = λy .([N/x]M), y not free in N

Alpha renaming can be applied freely, variables drawn from the infinite
pool of variable names
Examples:

[z/x]x
[z/x](λx .x x)

[z/x](λy .y x)

[z/x](λz .x z)

z
λx .x x
λy .y z
λa.z a

12 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

If this condition
is not met, then
alpha conversion

is needed.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Properties of reduction (i.e., semantics)

188

• How do we select redexes for reduction steps?

• Does the result depend on such a choice?

• Does reduction ultimately terminate with a normal form?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Illustration of different reductions
(We assume natural numbers with “+”.)

Option 1

	
 (λf .λx.f (f x)) (λy.y + 1) 2

→ 	
 (λx.(λy.y +1) ((λy.y +1) x)) 2

→ 	
 (λx.(λy.y +1) (x +1)) 2

→ 	
 (λx.(x+1+1)) 2

→ 	
 (2+1+1)

→ 	
 4

189

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Option 2

	
 (λf .λx.f (f x)) (λy.y + 1) 2

→ 	
 (λx.(λy.y +1) ((λy.y +1) x)) 2

→	
 (λy.y +1) ((λy.y +1) 2)

→ 	
 ...

→ 	
 ...

→ 	
 4

© Ralf Lämmel, 2009-2012 unless noted otherwise

Confluence

• Confluence: evaluation strategy is not significant for final value.

• That is: there is (at most) one normal form of a given expression.

190

[http://en.wikipedia.org/wiki/Church–Rosser_theorem]

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Confluence

• M →* N means M reduces to N in zero or more steps.

• Confluence

If M →* N and M →* N’,

then there exists some P

such that N →* P and N’ →* P.

191

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Strong normalization property of
a calculus with reduction

• Definition:

For every term M there is a normal form N such that M →* N.

• Strong normalization properties for lambda calculi:

✦ Untyped lambda calculus: no

✦ Simply-typed lambda calculus: yes

192

Introduction

Example

No

(λx .x x)(λx .x x)

We do have strong normalization, however, in simply-typed lambda
calculus
Note, different evaluation strategies can have different termination
behavior

call-by-value vs. call-by-name
Reduction strategies:

Full beta reduction—reduce anywhere
Normal order—reduce the leftmost outermost redex
Call by name—normal order, but never reduce inside abstractions
Call by value—reduce outermost redexes only, and reduce the argument
first

18 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Evaluation/reduction strategies

✦ Full beta reduction

Reduce anywhere.

✦ Applicative order (“reduce the leftmost innermost redex”)

Reduce argument before applying function.

✦ Normal order (“reduce the leftmost outermost redex”)

Apply function before reducing argument.

193

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Choice of strategy
may impact

termination behavior

http://en.wikipedia.org/wiki/Evaluation_strategy

lazy
(non-strict)

eager
(strict)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Extension vs. encoding

• Typical extensions

(giving rise to so-called applied lambda calculi)

✦ Primitive types (numbers, Booleans, ...)
✦ Type constructors (tuples, records, ...)
✦ Recursive functions
✦ Effects (cell, exceptions, ...)
✦ ...

• Many extensions can be encoded in theory in
terms of pure lambda calculus, except that such
encoding is somewhat tedious.

194

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Church Booleans

• Encodings of literals

✦ true = λt.λf.t

✦ false = λt.λf.f

• Conditional expression (if)

✦ Expectations

★ test b v w →* v, if b = true

★ test b v w →* w, if b = false
✦ Encoding

★ test = λl.λm.λn.l m n
195

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example reduction

	
 (λl.λm.λn.l m n) true v w

→	
 (λm.λn.true m n) v w

→ 	
(λn.true v n) w

→ 	
true v w

→ 	
(λt.λf.t) v w

→	
 (λf.v)w

→	
 v
196

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Church pairs

• A Boolean value picks either the 1st or the 2nd value of the pair.

• Construction and projections

✦ pair = λf.λs.λb.b f s

✦ first = λp.p true

✦ second = λp.p false

197

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Church numerals
• Encodings of numbers

✦ c0 = λs.λz.z
✦ c1 = λs.λz.s z
✦ c2 = λs.λz.s (s z)
✦ c3 = λs.λz.s (s (s z))
✦ ...

• Encodings of functions on numbers
✦ succ = λn.λs.λz.s (n s z)
✦ plus = λm.λn.λs.λz.m s (n s z)
✦ times = λm.λn.m (plus n) c0
✦ ...

198

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

A numeral n is a lambda abstraction that
is parameterized by a case for zero, and a

case for succ. In the body, the latter is
applied n times to the former. This caters

for primitive recursion.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Recursive functions

• Let us define the factorial function.

• Suppose we had “recursive function definitions”.

f ≡ λn. if n == 0 then 1 else n*f(n - 1)

• Let us do such recursion with anonymous functions.

• Fixed point combinators to the rescue!

199

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Fixed points

• Consider a function f : X → X.

• A fixed point of f is a value z such that z = f(z).

• A function may have none, one, or multiple fixed points.

• Examples (functions and sets of fixed points):

✦ f(x) = 2x

✦ f(x) = x

✦ f(x) = x + 1

200

{0}

{0,1,...}

∅

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Fixed point combinators

We call Y a fixed-point combinator

if it satisfies the following definitional property:

For all f : X → X it holds that Y f = f (Y f)

201

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

100(M)$ Question:
does such a Y exist?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Defining factorial as a fixed point

• Start from a recursive definition.

f ≡ λn. if n == 0 then 1 else n*f(n - 1)

• Eliminate self-reference; receive function as argument.

g ≡ λh.λn.if n == 0 then 1 else n*h(n - 1)

★ g takes a function (h) and returns a function.

• Define f as a fixed point.

f ≡ Y g

202

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Fixed points cont’d

• For example, apply definitional property to factorial g:
	
 	
 	
 	
 	
 (Y g) 2
=[Y def. prop.] 	
 	
 g (Y g) 2

=[unfold g] 	
	
 	
 (λ h.λ n.if n == 0 then 1 else n*h(n - 1)) (Y g) 2
=[beta reduce]	
 	
 (λ n.if n == 0 then 1 else n*((Y g)(n - 1))) 2
=[beta reduce]	
 	
 if 2 == 0 then 1 else 2*((Y g)(2 - 1))
=[“-” reduce]	
 	
 if 2 == 0 then 1 else 2*((Y g)(1))
=[“if” reduce]	
 	
 2*((Y g)(1))
= 	
 	
 	
 	
 	
 ...
=	
 	
 	
 	
 	
 2

203

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Apply these steps
one more time.

This is as if we had extended evaluation.

Exercise for you!

© Ralf Lämmel, 2009-2012 unless noted otherwise

A lambda term for Y
• One option:

	
 Y = λf .(λx.f (x x))(λx.f (x x))

• Verification of the definitional property:

	
 	
 	
 	
 	
 Y g = g (Y g)

• Proof:

	
 	
 	
 	
 	
 Y g

=[unfold Y] 	
 	
 (λf .(λx.f (x x))(λx.f (x x))) g

=[beta reduce]	
 (λx.g(x x))(λx.g(x x)))

=[beta reduce]	
 g ((λx.g(x x)) (λx.g(x x)))

=[fold Y] 	
 	
 	
 g (Y g)
204

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Not suitable for
applicative order.

Exercise for you!

© Ralf Lämmel, 2009-2012 unless noted otherwise

Prolog as a sandbox for
semantics of lambda calculi

205

© Ralf Lämmel, 2009-2012 unless noted otherwise

Untyped NB

206

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/nb/

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntax of NB

207

More than one syntactic category

Language NB

t ::= terms:
v value
if t1 then t2 else t3 conditional
succ t successor
pred t predecessor
iszero t test for zero

v ::= values:
true constant true
false constant false
nv numeric value

nv ::= numeric values:
0 zero value
succ nv successor value

54 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntax of NB

208

term(V) :- value(V).
term(if(T1,T2,T3)) :- term(T1), term(T2), term(T3).
term(succ(T)) :- term(T).
term(pred(T)) :- term(T).
term(iszero(T)) :- term(T).

value(true).
value(false).
value(NV) :- nvalue(NV).

nvalue(zero).
nvalue(succ(NV)) :- nvalue(NV).

Prolog

We are faithful to the
distinction of the

syntactical categories.

© Ralf Lämmel, 2009-2012 unless noted otherwise

NB: sample terms

209

Prolog

if(iszero(pred(succ(zero))),zero,succ(succ(zero))).

if(iszero(zero),iszero(succ(zero)),true).

supposed to
evaluate to 0

supposed to
evaluate to false

© Ralf Lämmel, 2009-2012 unless noted otherwise

Evaluation rules of NB
(SOS)

210

Types for NB

Reminder NB evaluation rules

E-Iszero
t → t �

iszero t → iszero t �

E-IszeroZero
iszero 0→ true

E-IszeroSucc
iszero (succ nv)→ false

E-Succ
t → t �

succ t → succ t �

E-Pred
t → t �

pred t → pred t �

E-PredZero
pred 0→ 0

E-PredSucc
pred (succ nv)→ nv

E-IfTrue
if true then t2 else t3 → t2

E-IfFalse
if false then t2 else t3 → t3

E-If
t1 → t �

1

if t1 then t2 else t3 → if t �
1 then t2 else t3

14 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Exercise: what
happens to our

type system
when we omit

the rule?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Evaluation rules of NB
(SOS)

211

Prolog

% eval(pred(zero),zero).
eval(pred(succ(NV)),NV) :- nvalue(NV).
eval(succ(T1),succ(T2)) :- eval(T1,T2).
eval(pred(T1),pred(T2)) :- eval(T1,T2).
eval(iszero(zero),true).
eval(iszero(succ(NV)),false) :- nvalue(NV).
eval(iszero(T1),iszero(T2)) :- eval(T1,T2).
eval(if(true,T2,_),T2).
eval(if(false,_,T3),T3).
eval(if(T1,T2,T3),if(T4,T2,T3)) :- eval(T1,T4).

Disfavored
semantics

Note: appearances of
metavariables in SOS
translate into tests for

values.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Reflexive, transitive closure

212

Prolog

manysteps(V,V) :- value(V).

manysteps(T1,V) :- eval(T1,T2), manysteps(T2,V).

This is like ➝* in the formal setup, and
the predicate works for any language

with a binary reduction relation eval/2.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Composing everything

213

:- [...]. % Import syntax and semantics
:- [...]. % Import main predicate

:-
 current_prolog_flag(argv,Argv),
 (append(_,['--',Input],Argv), main(Input), halt; true).

Prolog

Hence, we can invoke the language
processor from the command-line prompt.

© Ralf Lämmel, 2009-2012 unless noted otherwise 214

Prolog

main(Input)
 :-
 see(Input), read(Term), seen,
 format('Input term: ~w~n',[Term]),
 manysteps(Term,X),
 show(X,Y),
 format('Value of term: ~w~n',[Y]).

show(zero,0) :- !.
show(succ(X),Z) :- !, show(X,Y), Z is Y + 1.
show(X,X).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Running the NB interpreter

215

$ swipl -q -f main.pro -- ../samples/sample1.nb
Input term: if(iszero(pred(succ(zero))),zero,succ(succ(zero)))
Value of term: 0
$

© Ralf Lämmel, 2009-2012 unless noted otherwise

The untyped lambda calculus

216

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formalization of the lambda calculus

• Syntax

• Evaluation

217

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

Terms

Values (normal forms)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntax of the untyped lambda calculus

218

Prolog

term(var(X)) :- variable(X).
term(app(T1,T2)) :- term(T1), term(T2).
term(lam(X,T)) :- variable(X), term(T).

value(lam(X,T)) :- variable(X), term(T).

variable(X) :- atom(X).
Variables are
Prolog atoms.

© Ralf Lämmel, 2009-2012 unless noted otherwise

λ: sample term

219

Prolog

app(app(app(
 % TEST (if-then-else)
 lam(l,lam(m,lam(n,app(app(var(l),var(m)),var(n))))),
 % Church Boolean True
 lam(t,lam(f,var(t)))),
 % Church Numeral 0
 lam(s,lam(z,var(z)))),
 % Church Numeral 1
 lam(s,lam(z,app(var(s),var(z))))).

We illustrate Church Booleans
and numerals. That is, we use a
conditional (TEST) to select

either C0 or C1.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Evaluation rules of
the untyped lambda calculus

220

Prolog

eval(app(T1,T2),app(T3,T2)) :-
 eval(T1,T3).

eval(app(V,T1),app(V,T2)) :-
 value(V),
 eval(T1,T2).

eval(app(lam(X,T1),V),T2) :-
 value(V),
 substitute(V,X,T1,T2).

Substitution (as needed for
beta reduction) is the

interesting part--both in the
formal setting. and in Prolog.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Substitution

221

Introduction

Inductive definition of substitution in λ calculus

[N/x]x = N
[N/x]y = y , y any variable different from x
[N/x](M1 M2) = ([N/x]M1) ([N/x]M2)

[N/x](λx .M) = λx .M
[N/x](λy .M) = λy .([N/x]M), y not free in N

Alpha renaming can be applied freely, variables drawn from the infinite
pool of variable names
Examples:

[z/x]x
[z/x](λx .x x)

[z/x](λy .y x)

[z/x](λz .x z)

12 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Introduction

Variable binding — precise definition

FV(M) defines the set of free variables in the term M

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx .M) = FV(M) \ {x}

Spot free and bound occurrences here:

(λx .y)(λy .y)

λx .(λy .x y)y

Combinator — a term with no free variables (also closed term)
9 / 36

© Ralf Lämmel, 2009-2012 unless noted otherwise

Substitution 1/3

222

Prolog

substitute(N,X,var(X),N).

substitute(_,X,var(Y),var(Y))
 :-
 \+ X == Y.

substitute(N,X,app(M1,M2),app(M3,M4))
 :-
 substitute(N,X,M1,M3),
 substitute(N,X,M2,M4).

substitute(_,X,lam(X,M),lam(X,M)).

The simple
cases

© Ralf Lämmel, 2009-2012 unless noted otherwise

Substitution 2/3

223

Prolog

substitute(N,X,lam(Y,M1),lam(Y,M2))
 :-
 \+ X == Y,
 freevars(N,Xs),
 \+ member(Y,Xs),
 substitute(N,X,M1,M2).

Push down substitution into the
body of the lambda abstraction if

its bound variable Y does not
occur freely in the target

expression N.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Substitution 3/3

224

Prolog

substitute(N,X,lam(Y,M1),lam(Z,M3))
 :-
 \+ X == Y,
 freevars(N,Xs),
 member(Y,Xs),
 freshvar(Xs,Z),
 substitute(var(Z),Y,M1,M2),
 substitute(N,X,M2,M3).

If Y occurs freely in N, then we
need to perform alpha

conversion for Y. Hence, we
find a fresh variable and

convert the body M1 before
we continue with the original

substitution.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Free variables

225

Prolog

freshvar(Xs,X)
 :-
 freshvar(Xs,X,0).

freshvar(Xs,N,N)
 :-
 \+ member(N,Xs).

freshvar(Xs,X,N1)
 :-
 member(N1,Xs),
 N2 is N1 + 1,
 freshvar(Xs,X,N2).

We use numbers as generated
variables. We find the smallest
number X that is not in Xs.

© Ralf Lämmel, 2009-2012 unless noted otherwise

An applied, untyped lambda calculus

226

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntax of
the applied, untyped lambda calculus

227

Prolog

:- multifile term/1.
:- ['../untyped/term.pro'].
:- ['../../nb/untyped/term.pro'].

:- multifile value/1.
:- ['../untyped/value.pro'].
:- ['../../nb/untyped/value.pro'].

We merge the syntax of NB
and lambda calculus. In this
manner, we get an applied

lambda calculus (with all the
applied bits of NB).

© Ralf Lämmel, 2009-2012 unless noted otherwise

λ: sample term

228

Prolog

app(app(
 % Twice function
 lam(f,lam(x,app(var(f),app(var(f),var(x))))),
 % Increment function
 lam(x,succ(var(x)))),
 % 2
 succ(succ(zero))).

evaluates to 4

© Ralf Lämmel, 2009-2012 unless noted otherwise

λ: sample term

229

Prolog

app(app(

 % CBV fixed point combinator
 lam(f,app(
 lam(x,app(var(f),lam(y,app(app(var(x),var(x)),var(y))))),
 lam(x,app(var(f),lam(y,app(app(var(x),var(x)),var(y))))))),

 % iseven
 lam(e,lam(x,if(
 iszero(var(x)),
 true,
 if(
 iszero(pred(var(x))),
 false,
 app(var(e),pred(pred(var(x))))))))),

 % Argument to be tested
 succ(succ(succ(zero)))

).

We construct the recursive
iseven function and apply it to 3.

evaluates to false

© Ralf Lämmel, 2009-2012 unless noted otherwise

Evaluation rules
the applied, untyped lambda calculus

230

Prolog

:- multifile eval/2.
:- multifile substitute/4.
:- multifile freevars/2.
:- ['../untyped/eval.pro'].
:- ['../../nb/untyped/eval.pro'].
:- ['substitute.pro'].
:- ['freevars.pro'].

Essentially, we merge the
evaluation rules for NB and
the untyped lambda calculus.
However, we also need to

upgrade substitution to cope
with NB’s construct.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Substitution for applied part

231

Prolog

substitute(_,_,true,true).
substitute(_,_,false,false).
substitute(_,_,zero,zero).
substitute(N,X,succ(T1),succ(T2)) :- substitute(N,X,T1,T2).
substitute(N,X,pred(T1),pred(T2)) :- substitute(N,X,T1,T2).
substitute(N,X,iszero(T1),iszero(T2)) :- substitute(N,X,T1,T2).
substitute(N,X,if(T1a,T2a,T3a),if(T1b,T2b,T3b))
 :-
 substitute(N,X,T1a,T1b),
 substitute(N,X,T2a,T2b),
 substitute(N,X,T3a,T3b).

This is all trivial code. We
simply push substitution

into NB’s terms.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Free variables for applied part

232

Prolog

freevars(true,[]).
freevars(false,[]).
freevars(zero,[]).
freevars(succ(T),FV) :- freevars(T,FV).
freevars(pred(T),FV) :- freevars(T,FV).
freevars(iszero(T),FV) :- freevars(T,FV).
freevars(if(T1,T2,T3),FV) :-
 freevars(T1,FV1),
 freevars(T2,FV2),
 freevars(T3,FV3),
 union(FV1,FV2,FV12),
 union(FV12,FV3,FV).

This is all trivial code. We
simply traverse (and

union) over NB’s terms.

© Ralf Lämmel, 2009-2012 unless noted otherwise

• Summary: The untyped lambda calculus
✦ A concise core of functional programming.
✦ A foundation of computability.
✦ A Prolog model is again straightforward.

• Prepping: “Types and Programming Languages”
✦ Chapter 5

• Outlook:
✦ The simply-typed lambda calculus

233

