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What’s the lambda calculus?

• It is the core of functional languages.

• ...

175

Introduction

Examples

Some lambda terms

x
λx .x
λf .λg .λx .f (g x)

Compare lambda and, say, Haskell constructs:

λx .M (\x → M)

Aside: where does the λ (lambda) come from ?

7 / 36

The identity function

Function composition
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What’s the lambda calculus?

• It is the core of functional languages.

• It is a mathematical system for studying programming languages.

✦ design, specification, implementation, type systems, et al.

• It comes in variations of typing: implicit/explicit/none.

• Formal systems built on top of simply typed lambda calculus:

✦ System F — for studying polymorphism

✦ System F<: — for studying subtyping 

✦ ...

176
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Language constructs

177

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Abstract syntax:

	
 	
 	
 	
 	
 	
 	
 M ::= x | M M | λx.M

• M is a lambda term.

• An infinite set of variables x, y, z, . . . is assumed.

• M N is an application.

Function M is applied to the argument N. 

• λx.M is an abstraction.

The resulting function maps x to M.

Lambda functions are anonymous.
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Church’s thesis:

All intuitively computable functions are λ-definable.

• An established equivalence of notions of computability:

	
 Set of Lambda-definable functions

= 	
 Set of Turing-computable functions

Computability theory
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Syntax and semantics

• Syntax

• Evaluation

179

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x ]t

→ is the smallest binary relation on
terms satisfying the rules
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Terms

Values (normal forms)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Reduce function 
position, then reduce 
argument position, 

then apply.

A term that 
cannot be 

reduced further.
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Syntactic sugar and conventions

180

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• M N1 ...Nk	
means (...((M N1) N2) ... Nk). 

Function application groups from left to right.

• λx.x y means (λx.(x y)).

Function application has higher precedence.

• λx1x2 . . . xk. M means λx1.(λx2.(...(λxk .(M)) . . .))).
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Variable binding

181

• λ is a binding operator:

It binds a variable in the scope of the lambda abstraction.

• Examples:

✦ λx.M  	
 	
 x is bound (in the lambda abstraction)

✦ λx.x y	
	
 y is not bound (in the lambda abstraction).

• If a variable occurs in an expression without being bound, 
then it is called a free occurrence, or a free variable. 
Other occurrences of variables are called bound.

• A closed term is one without free variable occurrences.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Variable binding — precise definition

182

Introduction

Variable binding — precise definition

FV(M) defines the set of free variables in the term M

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx .M) = FV(M) \ {x}

Spot free and bound occurrences here:

(λx .y)(λy .y)

λx .(λy .x y)y

Combinator — a term with no free variables (also closed term)
9 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Exercise: what are the free and bound 
variable occurrences in these terms?
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Substitution and β-equivalence
• Computation for the λ-calculus is based on substitution.

• Substitution is defined by the equational axiom:

(λx.M)N = [N/x]M

• Think of substitution as invoking a function:

★ (λx.M) is the function,
★ N is the argument,
★ Substitution takes care of parameter passing.

184

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

The terms on both 
sides are also called 
β-equivalent.

Redex “→” direction = β-reduction
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α-equivalence and conversion

185

• Names of bound variable are insignificant.

λx.x defines the same function as λy.y 

• Suppose two terms differ only on the names of bound variables.

Then, they are said to be α-equivalent ( =α ).

• Equational axiom: 

λx.M = λy.[y/x]M 

where y does not appear in M

and substitution applies to free occurrences only.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Performing such 
renaming is also 

called α-conversion.
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Reduction M→N

186

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Computation (→) with the lambda calculus is then a series of

✦ β-reductions, and

✦ (“implicit”) α-conversions.

• Reflexive, transitive closure

• M →* N means M reduces to N in zero or more steps.

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x ]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36
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Inductive definition of substitution

187

Introduction

Inductive definition of substitution in λ calculus

[N/x ]x = N
[N/x ]y = y , y any variable different from x
[N/x ](M1 M2) = ([N/x ]M1) ([N/x ]M2)

[N/x ](λx .M) = λx .M
[N/x ](λy .M) = λy .([N/x ]M), y not free in N

Alpha renaming can be applied freely, variables drawn from the infinite
pool of variable names
Examples:

[z/x ]x
[z/x ](λx .x x)

[z/x ](λy .y x)

[z/x ](λz .x z)

12 / 36
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pool of variable names
Examples:

[z/x ]x
[z/x ](λx .x x)

[z/x ](λy .y x)

[z/x ](λz .x z)

z
λx .x x
λy .y z
λa.z a

12 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

If this condition 
is not met, then 
alpha conversion 

is needed.
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Properties of reduction (i.e., semantics)

188

• How do we select redexes for reduction steps?

• Does the result depend on such a choice?

• Does reduction ultimately terminate with a normal form?
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Illustration of different reductions
(We assume natural numbers with “+”.)

Option 1

	
 (λf .λx.f (f x)) (λy.y + 1) 2 

→ 	
 (λx.(λy.y +1) ((λy.y +1) x)) 2 

→ 	
 (λx.(λy.y +1) (x +1)) 2 

→ 	
 (λx.(x+1+1)) 2 

→ 	
 (2+1+1)

→ 	
 4

189

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Option 2

	
 (λf .λx.f (f x)) (λy.y + 1) 2 

→ 	
 (λx.(λy.y +1) ((λy.y +1) x)) 2 

→	
 (λy.y +1) ((λy.y +1) 2)

→ 	
 ... 

→ 	
 ...

→ 	
 4
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Confluence

• Confluence: evaluation strategy is not significant for final value.

• That is: there is (at most) one normal form of a given expression.

190

[http://en.wikipedia.org/wiki/Church–Rosser_theorem]

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Confluence

• M →* N means M reduces to N in zero or more steps.

• Confluence

If M →* N and M →* N’, 

then there exists some P

such that N →* P and N’ →* P.

191

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Strong normalization property of 
a calculus with reduction

• Definition:

For every term M there is a normal form N such that M →* N.

• Strong normalization properties for lambda calculi:

✦ Untyped lambda calculus: no

✦ Simply-typed lambda calculus: yes 

192

Introduction

Example

No

(λx .x x)(λx .x x)

We do have strong normalization, however, in simply-typed lambda
calculus
Note, different evaluation strategies can have different termination
behavior

call-by-value vs. call-by-name
Reduction strategies:

Full beta reduction—reduce anywhere
Normal order—reduce the leftmost outermost redex
Call by name—normal order, but never reduce inside abstractions
Call by value—reduce outermost redexes only, and reduce the argument
first

18 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Evaluation/reduction strategies

✦ Full beta reduction

Reduce anywhere.

✦ Applicative order (“reduce the leftmost innermost redex”)

Reduce argument before applying function.

✦ Normal order (“reduce the leftmost outermost redex”)

Apply function before reducing argument.

193

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Choice of strategy 
may impact 

termination behavior

http://en.wikipedia.org/wiki/Evaluation_strategy

lazy 
(non-strict)

eager 
(strict)



© Ralf Lämmel, 2009-2012 unless noted otherwise

Extension vs. encoding

• Typical extensions 

(giving rise to so-called applied lambda calculi)

✦ Primitive types (numbers, Booleans, ...)
✦ Type constructors (tuples, records, ...)
✦ Recursive functions
✦ Effects (cell, exceptions, ...)
✦ ...

• Many extensions can be encoded in theory in 
terms of pure lambda calculus, except that such 
encoding is somewhat tedious.

194

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Church Booleans

• Encodings of literals

✦ true = λt.λf.t 

✦ false = λt.λf.f

• Conditional expression (if)

✦ Expectations

★ test b v w →* v, if b = true

★ test b v w →* w, if b = false
✦ Encoding

★ test = λl.λm.λn.l m n
195

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Example reduction

	
 (λl.λm.λn.l m n) true v w 

→	
 (λm.λn.true m n) v w 

→ 	
(λn.true v n) w 

→ 	
true v w 

→ 	
(λt.λf.t) v w 

→	
 (λf.v)w 

→	
 v
196

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Church pairs

• A Boolean value picks either the 1st or the 2nd value of the pair.

• Construction and projections

✦ pair = λf.λs.λb.b f s 

✦ first = λp.p true 

✦ second = λp.p false

197

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Church numerals
• Encodings of numbers

✦ c0 = λs.λz.z 
✦ c1 = λs.λz.s z 
✦ c2 = λs.λz.s (s z) 
✦ c3 = λs.λz.s (s (s z))
✦ ...

• Encodings of functions on numbers
✦ succ = λn.λs.λz.s (n s z) 
✦ plus = λm.λn.λs.λz.m s (n s z) 
✦ times = λm.λn.m (plus n) c0
✦ ...

198

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

A numeral n is a lambda abstraction that 
is parameterized by a case for zero, and a 

case for succ. In the body, the latter is 
applied n times to the former. This caters 

for primitive recursion.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Recursive functions

• Let us define the factorial function.

• Suppose we had “recursive function definitions”.

f ≡ λn. if n == 0 then 1 else n*f(n - 1)

• Let us do such recursion with anonymous functions.

• Fixed point combinators to the rescue!

199

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Fixed points

• Consider a function f : X → X.

• A fixed point of f is a value z such that z = f(z).

• A function may have none, one, or multiple fixed points.

• Examples (functions and sets of fixed points):

✦ f(x) = 2x

✦ f(x) = x

✦ f(x) = x + 1

200

{0}

{0,1,...}

∅

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Fixed point combinators

We call Y a fixed-point combinator

if it satisfies the following definitional property:

For all f : X → X it holds that Y f  = f (Y f)

201

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

100(M)$ Question: 
does such a Y exist?
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Defining factorial as a fixed point

• Start from a recursive definition.

f ≡ λn. if n == 0 then 1 else n*f(n - 1)

• Eliminate self-reference; receive function as argument.

g ≡ λh.λn.if n == 0 then 1 else n*h(n - 1)

★ g takes a function (h) and returns a function.

• Define f as a fixed point.

f ≡ Y g

202

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Fixed points cont’d

• For example, apply definitional property to factorial g:
	
 	
 	
 	
 	
 (Y g) 2
=[Y def. prop.] 	
 	
 g (Y g) 2 

=[unfold g] 	
	
 	
 (λ h.λ n.if n == 0 then 1 else n*h(n - 1)) (Y g) 2
=[beta reduce]	
 	
 (λ n.if n == 0 then 1 else n*((Y g)(n - 1))) 2
=[beta reduce]	
 	
 if 2 == 0 then 1 else 2*((Y g)(2 - 1))
=[“-” reduce]	
 	
 if 2 == 0 then 1 else 2*((Y g)(1))
=[“if” reduce]	
 	
 2*((Y g)(1)) 
= 	
 	
 	
 	
 	
 ...  
=	
 	
 	
 	
 	
 2

203

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Apply these steps
one more time.

This is as if we had extended evaluation.

Exercise for you!
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A lambda term for Y
• One option:

	
 Y = λf .(λx.f (x x))(λx.f (x x))

• Verification of the definitional property:

	
 	
 	
 	
 	
 Y g = g (Y g)

• Proof:

	
 	
 	
 	
 	
 Y g

=[unfold Y] 	
 	
 (λf .(λx.f (x x))(λx.f (x x))) g

=[beta reduce]	
 (λx.g(x x))(λx.g(x x)))

=[beta reduce]	
 g ((λx.g(x x)) (λx.g(x x)))

=[fold Y] 	
 	
 	
 g (Y g)
204

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Not suitable for 
applicative order.

Exercise for you!
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Prolog as a sandbox for 
semantics of lambda calculi

205
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Untyped NB

206

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/nb/
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Syntax of NB

207

More than one syntactic category

Language NB

t ::= terms:
v value
if t1 then t2 else t3 conditional
succ t successor
pred t predecessor
iszero t test for zero

v ::= values:
true constant true
false constant false
nv numeric value

nv ::= numeric values:
0 zero value
succ nv successor value

54 / 58

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Syntax of NB

208

term(V) :- value(V).
term(if(T1,T2,T3)) :- term(T1), term(T2), term(T3).
term(succ(T)) :- term(T).
term(pred(T)) :- term(T).
term(iszero(T)) :- term(T).

value(true).
value(false).
value(NV) :- nvalue(NV).

nvalue(zero).
nvalue(succ(NV)) :- nvalue(NV).

Prolog

We are faithful to the 
distinction of the 

syntactical categories.
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NB: sample terms 

209

Prolog

if(iszero(pred(succ(zero))),zero,succ(succ(zero))).

if(iszero(zero),iszero(succ(zero)),true).

supposed to 
evaluate to 0

supposed to 
evaluate to false
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Evaluation rules of NB
(SOS)

210

Types for NB

Reminder NB evaluation rules

E-Iszero
t → t �

iszero t → iszero t �

E-IszeroZero
iszero 0→ true

E-IszeroSucc
iszero (succ nv)→ false

E-Succ
t → t �

succ t → succ t �

E-Pred
t → t �

pred t → pred t �

E-PredZero
pred 0→ 0

E-PredSucc
pred (succ nv)→ nv

E-IfTrue
if true then t2 else t3 → t2

E-IfFalse
if false then t2 else t3 → t3

E-If
t1 → t �

1

if t1 then t2 else t3 → if t �
1 then t2 else t3

14 / 28

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Exercise: what 
happens to our 

type system 
when we omit 

the rule?
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Evaluation rules of NB
(SOS)

211

Prolog

% eval(pred(zero),zero).
eval(pred(succ(NV)),NV) :- nvalue(NV).
eval(succ(T1),succ(T2)) :- eval(T1,T2).
eval(pred(T1),pred(T2)) :- eval(T1,T2).
eval(iszero(zero),true).
eval(iszero(succ(NV)),false) :- nvalue(NV).
eval(iszero(T1),iszero(T2)) :- eval(T1,T2).
eval(if(true,T2,_),T2).
eval(if(false,_,T3),T3).
eval(if(T1,T2,T3),if(T4,T2,T3)) :- eval(T1,T4).

Disfavored
semantics

Note: appearances of 
metavariables in SOS 
translate into tests for 

values.
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Reflexive, transitive closure

212

Prolog

manysteps(V,V) :- value(V).

manysteps(T1,V) :- eval(T1,T2), manysteps(T2,V).

This is like ➝* in the formal setup, and 
the predicate works for any language 

with a binary reduction relation eval/2.
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Composing everything

213

:- [...]. % Import syntax and semantics
:- [...]. % Import main predicate

:-
    current_prolog_flag(argv,Argv),
    ( append(_,['--',Input],Argv), main(Input), halt; true ).

Prolog

Hence, we can invoke the language 
processor from the command-line prompt.
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Prolog

main(Input)
 :-
    see(Input), read(Term), seen,
    format('Input term: ~w~n',[Term]),
    manysteps(Term,X),
    show(X,Y),
    format('Value of term: ~w~n',[Y]).

show(zero,0) :- !.
show(succ(X),Z) :- !, show(X,Y), Z is Y + 1.
show(X,X).
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Running the NB interpreter

215

$ swipl -q -f main.pro -- ../samples/sample1.nb 
Input term: if(iszero(pred(succ(zero))),zero,succ(succ(zero)))
Value of term: 0
$
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The untyped lambda calculus

216

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/
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Formalization of the lambda calculus

• Syntax

• Evaluation

217

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x ]t

→ is the smallest binary relation on
terms satisfying the rules
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lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x ]t

→ is the smallest binary relation on
terms satisfying the rules
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Terms

Values (normal forms)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Syntax of the untyped lambda calculus
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Prolog

term(var(X)) :- variable(X).
term(app(T1,T2)) :- term(T1), term(T2).
term(lam(X,T)) :- variable(X), term(T).

value(lam(X,T)) :- variable(X), term(T).

variable(X) :- atom(X).
Variables are 
Prolog atoms.
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λ: sample term 
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Prolog

app(app(app(
 % TEST (if-then-else)
 lam(l,lam(m,lam(n,app(app(var(l),var(m)),var(n))))),
 % Church Boolean True
 lam(t,lam(f,var(t)))),
 % Church Numeral 0
 lam(s,lam(z,var(z)))),
 % Church Numeral 1
 lam(s,lam(z,app(var(s),var(z))))).

We illustrate Church Booleans 
and numerals. That is, we use a 
conditional (TEST) to select 

either C0 or C1.
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Evaluation rules of 
the untyped lambda calculus
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Prolog

eval(app(T1,T2),app(T3,T2)) :-
  eval(T1,T3).

eval(app(V,T1),app(V,T2)) :-
  value(V),
  eval(T1,T2).

eval(app(lam(X,T1),V),T2) :-
  value(V),
  substitute(V,X,T1,T2).

Substitution (as needed for 
beta reduction) is the 

interesting part--both in the 
formal setting. and in Prolog.
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Substitution
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Introduction

Inductive definition of substitution in λ calculus

[N/x ]x = N
[N/x ]y = y , y any variable different from x
[N/x ](M1 M2) = ([N/x ]M1) ([N/x ]M2)

[N/x ](λx .M) = λx .M
[N/x ](λy .M) = λy .([N/x ]M), y not free in N

Alpha renaming can be applied freely, variables drawn from the infinite
pool of variable names
Examples:

[z/x ]x
[z/x ](λx .x x)

[z/x ](λy .y x)

[z/x ](λz .x z)

12 / 36

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Introduction

Variable binding — precise definition

FV(M) defines the set of free variables in the term M

FV(x) = {x}
FV(MN) = FV(M) ∪ FV(N)

FV(λx .M) = FV(M) \ {x}

Spot free and bound occurrences here:

(λx .y)(λy .y)

λx .(λy .x y)y

Combinator — a term with no free variables (also closed term)
9 / 36
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Substitution 1/3
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Prolog

substitute(N,X,var(X),N).

substitute(_,X,var(Y),var(Y))
 :-
    \+ X == Y.

substitute(N,X,app(M1,M2),app(M3,M4))
 :-
    substitute(N,X,M1,M3),
    substitute(N,X,M2,M4).

substitute(_,X,lam(X,M),lam(X,M)).

The simple 
cases
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Substitution 2/3
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Prolog

substitute(N,X,lam(Y,M1),lam(Y,M2))
 :-
    \+ X == Y,
    freevars(N,Xs),
    \+ member(Y,Xs),
    substitute(N,X,M1,M2).

Push down substitution into the 
body of the lambda abstraction if 

its bound variable Y does not 
occur freely in the target 

expression N. 
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Substitution 3/3
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Prolog

substitute(N,X,lam(Y,M1),lam(Z,M3))
 :-
    \+ X == Y,
    freevars(N,Xs),
    member(Y,Xs),
    freshvar(Xs,Z),
    substitute(var(Z),Y,M1,M2),
    substitute(N,X,M2,M3).

If Y occurs freely in N, then we 
need to perform alpha 

conversion for Y. Hence, we 
find a fresh variable and 

convert the body M1 before 
we continue with the original 

substitution.
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Free variables
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Prolog

freshvar(Xs,X)
 :-
    freshvar(Xs,X,0).

freshvar(Xs,N,N)
 :- 
    \+ member(N,Xs).

freshvar(Xs,X,N1)
 :- 
    member(N1,Xs),
    N2 is N1 + 1,
    freshvar(Xs,X,N2).

We use numbers as generated 
variables. We find the smallest 
number X that is not in Xs.
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An applied, untyped lambda calculus

226

https://slps.svn.sourceforge.net/svnroot/slps/topics/semantics/lambda/
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Syntax of 
the applied, untyped lambda calculus
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Prolog

:- multifile term/1.
:- ['../untyped/term.pro'].
:- ['../../nb/untyped/term.pro'].

:- multifile value/1.
:- ['../untyped/value.pro'].
:- ['../../nb/untyped/value.pro'].

We merge the syntax of NB 
and lambda calculus. In this 
manner, we get an applied 

lambda calculus (with all the 
applied bits of NB).
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λ: sample term 
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Prolog

app(app(
 % Twice function
 lam(f,lam(x,app(var(f),app(var(f),var(x))))),
 % Increment function
 lam(x,succ(var(x)))),
 % 2
 succ(succ(zero))).

evaluates to 4
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λ: sample term 
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Prolog

app(app(

 % CBV fixed point combinator
 lam(f,app(
            lam(x,app(var(f),lam(y,app(app(var(x),var(x)),var(y))))),
            lam(x,app(var(f),lam(y,app(app(var(x),var(x)),var(y))))))),

 % iseven
 lam(e,lam(x,if(
               iszero(var(x)),
               true,
               if(
                 iszero(pred(var(x))),
                 false,
                 app(var(e),pred(pred(var(x))))))))),

 % Argument to be tested
 succ(succ(succ(zero)))

).

We construct the recursive 
iseven function and apply it to 3.

evaluates to false
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Evaluation rules
the applied, untyped lambda calculus

230

Prolog

:- multifile eval/2.
:- multifile substitute/4.
:- multifile freevars/2.
:- ['../untyped/eval.pro'].
:- ['../../nb/untyped/eval.pro'].
:- ['substitute.pro'].
:- ['freevars.pro'].

Essentially, we merge the 
evaluation rules for NB and 
the untyped lambda calculus. 
However, we also need to 

upgrade substitution to cope 
with NB’s construct.
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Substitution for applied part
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Prolog

substitute(_,_,true,true).
substitute(_,_,false,false).
substitute(_,_,zero,zero).
substitute(N,X,succ(T1),succ(T2)) :- substitute(N,X,T1,T2).
substitute(N,X,pred(T1),pred(T2)) :- substitute(N,X,T1,T2).
substitute(N,X,iszero(T1),iszero(T2)) :- substitute(N,X,T1,T2).
substitute(N,X,if(T1a,T2a,T3a),if(T1b,T2b,T3b)) 
 :- 
    substitute(N,X,T1a,T1b),
    substitute(N,X,T2a,T2b),
    substitute(N,X,T3a,T3b).

This is all trivial code. We 
simply push substitution 

into NB’s terms.
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Free variables for applied part
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Prolog

freevars(true,[]).
freevars(false,[]).
freevars(zero,[]).
freevars(succ(T),FV) :- freevars(T,FV).
freevars(pred(T),FV) :- freevars(T,FV).
freevars(iszero(T),FV) :- freevars(T,FV).
freevars(if(T1,T2,T3),FV) :-
  freevars(T1,FV1),
  freevars(T2,FV2),
  freevars(T3,FV3),
  union(FV1,FV2,FV12),
  union(FV12,FV3,FV).

This is all trivial code. We 
simply traverse (and 

union) over NB’s terms.
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• Summary: The untyped lambda calculus
✦ A concise core of functional programming.
✦ A foundation of computability.
✦ A Prolog model is again straightforward.

• Prepping: “Types and Programming Languages”
✦ Chapter 5

• Outlook:
✦ The simply-typed lambda calculus
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