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Abstract

Wemodel a domain-specific language FSML for Finite State Machines (FSMs).
The language model encompasses concrete a textual syntax, a term-based
abstract syntax, a graph-based visual syntax, extra constraints for well-
formedness, a simulation semantics, and a code-generation semantics for rep-
resenting and executing FSMs in Java. The key motivation for the present
model of FSML to be explainable exhaustively in terms of simple formalisms
and idioms, all layered on top of Prolog. The FSML development is part of
the SlePro project; see https://github.com/slebok/slepro.
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Figure 1: A finite state machine for turnstiles.

1. Introducing FSML

Consider the visual representation of a finite state machine (FSM) for
a turnstile (as used in subway systems). The idea is, of course, that the
customer is supposed to insert a ticket before passing the turnstile. Thus,
the FSM assumes the initial state ‘locked’. (The initial state is highlighted
by using a filled ellipse.) The input ‘ticket’ (meaning the insertion of a ticket)
causes a transition to the state ‘unlocked’ and the action ‘collect’. In this
new state, the input ‘pass’ (meaning the attempt to pass the turnstile) causes
a transition back to the state ‘locked’. If the input ‘pass’ was made in the
state ‘locked’, then this causes a transition to the state ‘exception’ and an
action ‘alarm’. The state ‘exception’ rejects the input ‘ticket’. The input
‘pass’ does, of course, keeps one in the state ‘exception’. The ‘alarm’ can be
muted with the input ‘mute’. We return to the normal ‘locked’ state upon
the input ‘release’.

We will model a language FSML (FSM language) for modeling FSMs.
Specifically, we will model several aspects of FSML:

• The visual syntax as used in the figure; see §7.

• A textual syntax as an alternative concrete syntax; see §2.

• An abstract syntax useful for representation in programs; see §3.

• Extra well-formedness constraints on the abstract syntax; see §4.

• A reference semantics for the simulation of FSMs; see §5.

• A code generator translating FSMs into OO programs; see §6.
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languages/fsml/sample.fsml
initial state locked {

ticket/collect �> unlocked;
pass/alarm �> exception;

}

state unlocked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure 2: The FSM of Figure 1 in concrete textual syntax.

This primer is concluded by some ‘food for thought’ in §8. That is, we crit-
ically discuss the language model at hand as well as the underlying approach,
thereby also motivating reproductions of the model as well as variations on
the model, possibly leveraging diverse technologies and techniques.

Various technical details are separated out into the appendix.

2. The concrete textual syntax of FSML

A textual syntax may break down an FSM into ‘state declarations’, i.e.,
states with the associated transitions. Each transition identifies the relevant
input, the optional action, and the target state. In fact, if the target state is
omitted, then this is taken to mean that the transition’s target is the current
state. See Figure 2 for an illustration.

Let us define the syntax in terms of a context-free grammar. We use
an EGL grammar, where EGL stands for ‘extended grammar language’ and
can be regarded as a variation on the Extended Backus Naur Form. EGL
is an ad-hoc grammar notation that is provided by the SlePro project;
see Appendix A for a self-description. In particular, EGL grammars can
be executed for the purpose of parsing, but we omit all such details here.
See Figure 3 for the grammar. It can be assumed that the concrete textual
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languages/fsml/cs.egl
fsm : { state }⇤ ;
state : initial ’state’ id ’{’ { transition }⇤ ’}’ ;
[initial] initial : ’initial’ ;
[noninitial] initial : ;
transition : input { ’/’ action }? { ’�>’ id }? ’;’ ;
id : name ;
input : name ;
action : name ;

Figure 3: Context-free grammar for the concrete syntax of FSML.

syntax, as illustrated in Figure 2, can be parsed indeed with the present
grammar.

3. The abstract syntax of FSML

Eventually, we want to manipulate FSMs in (Prolog) programs. To this
end, we need a suitable abstract syntax. As an aside, there exist metapro-
gramming systems that can leverage the concrete syntax directly, without any
need for a separate abstract syntax, but we will adopt the simpler approach
here to indeed use an abstract syntax. In fact, we assume that abstract
syntax trees are (Prolog) terms as in the sense of term algebras or algebraic
specifications.

See Figure 4 for an illustration. The abstract syntax describes a FSM as
a list of state declarations, which are in turn tuples (triplets) of the form (V ,
Id , Ts) where V is a Boolean saying whether the state is initial, Id is the
assigned id (name) of the state, and Ts is a list of transitions. Each transition
is a triplet of the form (In, A, To) where In is the input for the transition,
A is the optional action and To is the target state. The optionality of the
action is represented such that the missing action is represented by ‘[]’ and
the present action, e.g., ‘eject’, is represented by ‘[eject]’.

Let us define the abstract syntax in terms of a signature that defines all
valid FSM terms. We use an ESL signature, where ESL stands for ‘extended
signature language’ and can be regarded as (quite) a variation on notations
familiar from algebraic specification or (less) a variation on type systems used
in logic or functional programming. ESL is an ad-hoc signature notation that
is provided by the SlePro project; see Appendix B for a syntax definition
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languages/fsml/sample.term
[
(true,locked,[
(ticket,[collect],unlocked),
(pass,[alarm],exception)]),

(false,unlocked,[
(ticket,[eject],unlocked),
(pass,[],locked)]),

(false,exception,[
(ticket,[eject],exception),
(pass,[],exception),
(mute,[],exception),
(release,[],locked)])

].

Figure 4: The FSM of Figure 1 in abstract syntax.

languages/fsml/as.esl
type fsm = state⇤ ;
type state = (initial, id, transition⇤) ;
type initial = boolean ;
type transition = (input, action?, id) ;
type id = atom ;
type input = atom ;
type action = atom ;

Figure 5: Signature for the abstract syntax of FSML.

of the signature notation. In particular, ESL grammars can be executed
for conformance checking to see whether a given term conforms to a given
signature, but we omit all such details here. See Figure 5 for the signature.
The term in Figure 4 conforms indeed to the present signature.

As we intend to parse FSMs via the concrete textual syntax and to manip-
ulate FSMs though via the abstract term-based syntax, we need a mapping
from the former to the latter. Of course, both syntaxes are very close to
each other in terms of the nonterminals or types defined and in terms of
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languages/fsml/cs-to-as.pro
% Lexical mapping for name
fsmlMapping(name, String, Atom) :�
name(Atom, String).

% Mapping for states
fsmlMapping(state, (I1, N, Ts1), (I2, N, Ts2)) :�
toBoolean((I1==initial), I2),
map(normalizeTargetState(N), Ts1, Ts2).

% Make target state mandatory
normalizeTargetState( , (I, A, [S]), (I, A, S)).

% Fill in missing target state as the source state
normalizeTargetState(N, (I, A, []), (I, A, N)).

Figure 6: Concrete to abstract syntax mapping for FSML.

the structural breakdown. However, some fine details need to be declared
explicitly via a mapping so that parse trees according to the earlier grammar
are precisely mapped to terms that conform to the signature for the abstract
syntax. The mapping is defined by a Prolog predicate fsmlMapping ; see the
Prolog clauses in Figure 6.

The syntax definition approach of the SlePro project assumes such map-
pings are indeed predicates with three arguments N , T1 , T2 as follows. N is
the nonterminal (according to the grammar for the concrete syntax) whose
parse trees are to be mapped, i.e., rewritten. T1 is the (imploded) parse
tree that just systematically follows the structure of the grammar. T2 is the
term that should be used in place of T1 . The starting point is an identity
mapping; the mapping predicate only overwrites those cases where the iden-
tity mapping is not appropriate. In Figure 6, the first clause replaces the
list-of-chars representation of FSM names by proper atoms (‘strings’). The
second clause replaces ‘initial’ by ‘true’ (and ‘noninitial’ by ‘false’); it also
fills in the target state, when it is missing, thereby taking care of some syn-
tactic sugar, i.e., the permitted omission of the target state when it equals
the source state of a transition.
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languages/fsml/ok.pro
% Wellness of FSMs
okFsm(Fsm) :�
require(fsmSingleInitial(Fsm)),
require(fsmDistinctIds(Fsm)),
require(fsmResolvable(Fsm)),
require(fsmDeterministic(Fsm)),
require(fsmReachable(Fsm)).

Figure 7: Overview of constraints imposed on FSML’s abstract syntax.

4. Constraints on the abstract syntax

The concrete and abstract syntaxes so far do not cover some of the con-
straints that we would naturally apply to FSMs. For instance, we did not
rule out so far that FSMs have multiple initial states, which is probably not
useful. Context-free grammars and signatures are notoriously limited in ex-
pressiveness to model such constraints, whereas they are convenient for the
basic definition of structure. We need to add extra constraints on top of (say)
the abstract syntax definition. In some communities, it is common to actu-
ally consider these constraints to form part of the abstract syntax whereas we
follow another common view that such constraints are considered separately
as in well-formedness or well-typedness judgements used in type systems for
programming languages.

See Figure 7 for the Prolog specification listing the named constraints
that we consider here. Each constraint gives rise to a separate predicate
considered below. Here is short summary. Constraint fsmSingleInitial is
meant to ensure that there is exactly one initial state declaration. Constraint
fsmDistinctIds is meant to ensure that the state ids of the state declarations
are distinct. Constraint fsmResolvable is meant to ensure that all referenced
target states are declared. Constraint fsmDeterministic is meant to ensure
that each given input uniquely defines the target state to be transitioned to,
if any. Constraint fsmReachable is meant to ensure that all declared states
are reachable from the initial state. In Figure 7, all constraint predicates are
surround by an application of the meta-predicate require/1, which is simply
there for better error reporting. That is, if the argument of require/1 fails,
then this is reported immediately, as opposed to simply propagating failure
silently.
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languages/fsml/ok/initial.pro
% There is a single initial state
fsmSingleInitial(Fsm) :�
findall(
Initial,
member((true, Initial, ), Fsm),
Initials),

length(Initials, 1).

Figure 8: There is only a single state declaration for an initial state.

languages/fsml/tests/initialNotOk.fsml
initial state locked {

ticket/collect �> unlocked;
pass/alarm �> exception;

}

initial state unlocked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure 9: A negative test case: Figure 2 with a second initial state.

All constraints are specified in Figure 8–Figure 18. We also show nega-
tive test cases that hence illustrate violation of the constraints; these cases
are derived by minimalistic mutation of the sample FSM of Figure 2. The
constraints are relatively simple to express using Prolog’s meta-predicate
findall/3 which serves here for queries into the terms of the abstract syntax.
For instance, in Figure 8, we find all state ids from state declarations with
‘true’ for the initial component. Once this set is retrieved that the resulting
list is of length 1; thus, there is exactly one initial.

The constraint for reachability (Figure 16–Figure 18) is somewhat inter-
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languages/fsml/ok/distinct.pro
% All state ids are distinct
fsmDistinctIds(Fsm) :�
findall(
Id,
member(( , Id, ), Fsm),
Ids),

set(Ids).

Figure 10: The state ids of the state declarations are distinct.

languages/fsml/tests/idsNotOk.fsml
initial state locked {

ticket/collect �> unlocked;
pass/alarm �> exception;

}

state locked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure 11: A negative test case: Figure 2 with a double declaration of state ‘locked’.

esting, as we have to model a fixed point computation to find all states by
repeated consideration of transition as to whether the set of known to be
reachable states implies more reachable states. The fixed point criterion is
here that we do not find additional states; see Figure 18.

5. The reference semantics for FSML

So far we relies on an intuitive understanding of the FSML semantics,
which is reasonable in so far that the notion of finite state machines is pretty
fundamental and familiar. Nevertheless, we are bound to provide a precise
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languages/fsml/ok/resolvable.pro
% All state ids are resolvable to states
fsmResolvable(Fsm) :�
findall(
DefId,
member(( , DefId, ), Fsm),
DefIds),

findall(
RefId,
(
member(( , , Ts), Fsm),
member(( , , RefId), Ts)

),
RefIds),

subset(RefIds, DefIds).

Figure 12: All referenced target states are declared.

languages/fsml/tests/resolutionNotOk.fsml
initial state locked {

ticket/collect �> unlockkked;
pass/alarm �> exception;

}

state unlocked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure 13: A negative test case: Figure 2 with a unresolvable state reference ‘unlockkked’.

and executable reference semantics of the language which can then be hold
accountable by other language-based software components, e.g., a code gen-
erator (see next section) or a refactoring.
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languages/fsml/ok/deterministic.pro
% Input is handled deterministically
fsmDeterministic(Fsm) :�
map(stateDeterministic, Fsm).

% Input is handled deterministically in a state
stateDeterministic(( , , Ts)) :�
findall(
I,
member((I, , ), Ts),
Is),

set(Is).

Figure 14: Each given input uniquely defines the target state to be transitioned to, if any.

languages/fsml/tests/determinismNotOk.fsml
initial state locked {

ticket/collect �> unlocked;
ticket/alarm �> exception;

}

state unlocked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure 15: A negative test case: Figure 2 with a nondeterministic transition; see the
double occurrence of ‘ticket’ in state ‘locked’.

Let us set up a test case for the FSM of Figure 2. That is, a valid input
sequence for the FSM is shown in Figure 19 and the corresponding output
in terms of actions and state changes is shown in Figure 19. We shall define
a semantics that indeed transforms the input into the output.

We speak of a reference semantics here to emphasize that this semantics
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languages/fsml/ok/reachable.pro
% All states are reachable from the initial state
fsmReachable(Fsm) :�
findall(
Id,
member(( , Id, ), Fsm),
Ids),

findall(
Initial,
member((true, Initial, ), Fsm),
Initials),

fixedPointIds(Fsm, Initials, Reachables),
setEq(Ids, Reachables).

Figure 16: All declared states are reachable from the initial state.

languages/fsml/tests/reachabilityNotOk.fsml
initial state locked {

ticket/collect �> locked;
pass/alarm �> exception;

}

state unlocked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure 17: A negative test case: Figure 2 with an unreachable state ‘unlocked’.

may not be practically useful immediately. That is, we will define the se-
mantics of a FSM by a simulation judgement which assumes that all input
is provided upfront and all output (the action sequence) is provided upon
completion of input processing. This is a batch model, which is useful in a
formal semantics, but it is not useful for using FSMs in interactive systems.
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languages/fsml/ok/closure.pro
% Compute closure of state reachable
fixedPointIds(Fsm, Ids1, Ids4) :�
findall(
Id2,
(
member(Id1, Ids1),
member(( , Id1, Ts), Fsm),
member(( , , Id2), Ts)

),
Ids2),

union(Ids1, Ids2, Ids3),
( \+ setEq(Ids1, Ids3) �>

fixedPointIds(Fsm, Ids3, Ids4)
; Ids4 = Ids1

).

Figure 18: Fixed point computation needed in Figure 16.

languages/fsml/sample.input
[
ticket, % Regular insertion of a ticket
pass, % Regular passage of turnstile
ticket, % Regular insertion of a ticket
pass, % Regular passage of turnstile
ticket, % Regular insertion of a ticket
ticket, % Tickets are ejected in unlocked state
pass, % Regular passage of turnstile
pass, % Attempt leads to exceptional state
ticket, % Tickets are ejected in exceptional state
pass, % Passage attempt keeps us in exceptional state
mute, % Mute indeed
release, % Return to normal
ticket, % Regular insertion of a ticket
pass % Regular passage of turnstile

].

Figure 19: A possible input sequence for FSM of Figure 2.
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languages/fsml/sample.output
[
([collect], unlocked),
([], locked),
([collect], unlocked),
([], locked),
([collect], unlocked),
([eject], unlocked),
([], locked),
([alarm], exception),
([eject], exception),
([], exception),
([], exception),
([], locked),
([collect], unlocked),
([], locked)

].

Figure 20: The output for Figure 19.

See Figure 21 for the semantics; the judgements are expressed in Prolog.
The clause at the top selects the initial state of the FSM and enters the
simulation with that state and the complete input. The remaining two clauses
describe the iteration over the input such that a suitable transition is looked
up in each step and action (if any) and the new state are paired up as an
element in the output so that simulation proceeds with the new state and
the remaining input.

6. The code generator for FSML

A practically useful interpretation of FSML would be achieved, if we en-
abled interactive execution of the FSMs in the context of some programming
environment. We pick Java as our target here. We describe a code gen-
erator which translates FSMs into Java code. The generated code can be
augmented with hand-written components specifically for the intended se-
mantics of actions. The Java representation of FSMs meets the requirement
that execution is step-by-step. That is, a transition is transparently realized
including the potential performance of an action whenever an input item
arrives.
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languages/fsml/simulation.pro
% Simulate FSM for given input to compute output
simulateFsm(
Fsm,
Input,
Output

) :�
member((true, Id, ), Fsm), % Select initial state
simulateFsm (Fsm, Id, Input, Output).

% All input was processed
simulateFsm ( , , [], []).

% Apply transition for input at hand
simulateFsm (Fsm, Id1, [Input|Inputs], [(Action, Id2)|Outputs]) :�
member(( , Id1, Ts), Fsm),
member((Input, Action, Id2), Ts),
simulateFsm (Fsm, Id2, Inputs, Outputs).

Figure 21: Semantics of FSML.

languages/fsml/java/State.java
// Generated code
public enum State {locked, unlocked, exception}

Figure 22: Java representation of the states for the turnstile example.

There are many di↵erent ways to generate imperative/OO code for FSMs.
We pick one particular option here–without loss of generality. The chosen
option can be said to be data-centric in that FSMs are represented in an
appropriate container-based data structure, whereas the execution of FSMs
relies on the interpretation of said data structure. Further, the programmer-
defined meaning of actions is provided by a handler which interpreters action
names.

Figure 22–Figure 24 shows (generated) Java enum types for the states,
inputs, and actions. Obviously, these sets are trivially obtainable from the
abstract syntactical representation of an FSM. In Figure 25, this is illustrated
for the enum type for states. The predicate collects all (declared) state ids
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languages/fsml/java/Input.java
// Generated code
public enum Input {ticket, pass, mute, release}

Figure 23: Java representation of the inputs for the turnstile example.

languages/fsml/java/Action.java
// Generated code
public enum Action {collect, alarm, eject}

Figure 24: Java representation of the actions for the turnstile example.

languages/fsml/to-java/state.pro
statesOfFsm(Fsm, Text) :�

% Collect declared states
findall(
Id,
member(( , Id, ), Fsm),
Ids),

% Render enum type
ppJavaDecl(enum(public, ’State’, Ids), Text).

Figure 25: Code generation for state type.

and assembles an enum type, subject to a suitable abstract syntax of Java;
see Appendix C for a summary of the (abstract) Java syntax used by the
code generator. Finally, the Java declaration is pretty printed; see the use of
ppJavaDecl/2 in the figure, subject to a pretty printer for the Java language.
The generator predicates for the enum types for inputs and actions are quite
similar.

Figure 26 shows a generic, i.e., FSM-independent interface for defining
handlers for FSM actions. Figure 27 shows a trivial implementation of said
interface for the turnstile example. The actions simply print out the names
of the actions, but it is clear that arbitrary functionality can be plugged into
FSM execution in this manner.

Figure 28 shows essentially the runtime for FSMs. This is generic code
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languages/fsml/java/HandlerBase.java
// Reusable code
public interface HandlerBase<A> {

public void handle(A a);
}

Figure 26: Generic interface for action handers.

languages/fsml/java/Handler.java
// Turnstile�specific, handwritten code
public class Handler implements HandlerBase<Action> {

public void handle(Action a) {
switch (a) {
case collect :

System.out.println(”collect”);
break;

case alarm :
System.out.println(”alarm”);
break;

case eject :
System.out.println(”eject”);
break;

}

}

}

Figure 27: A trivial interpretation of the turnstile actions.

which is appropriately parameterized in the types for states, inputs, and
actions. The class relies on a table for holding the transitions in the form of
a map from states to maps from inputs to pairs of optional actions and states.
There is an appropriate add method which makes it easy to insert into this
non-basic container. The class is also prepared to keep track of and make use
of a handler for the involved actions. The class is called StepperBase because
its key method is the one for performing a step (a transition) based on an
actual input item.

Figure 29 shows the generated code for the turnstile-specific subclass of
the StepperBase class. The generic parameters of StepperBase are instan-
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languages/fsml/java/StepperBase.java
import java.util.HashMap;

// Reusable code
public abstract class StepperBase<S, I, A> {

protected S state;
protected HandlerBase<A> handler;
private HashMap<S,HashMap<I,Pair<A,S>>> table =

new HashMap<S,HashMap<I,Pair<A,S>>>();
public final void add(S from, I i, A a, S to) {

if (!table.containsKey(from))
table.put(from, new HashMap<I,Pair<A,S>>());

HashMap<I,Pair<A,S>> subtable = table.get(from);
Pair<A,S> pair = new Pair<A,S>(a, to);
subtable.put(i, pair);

}

public final void step(I i) {
HashMap<I,Pair<A,S>> subtable = table.get(state);
Pair<A,S> pair = subtable.get(i);
S from = state;
S to = pair.y;
System.out.println(”from: ”+from+”, input: ”+i+”, to: ”+to);
if (pair.x!=null) handler.handle(pair.x);
state = to;

}

}

Figure 28: Generic class for FSM execution.

tiated to the turnstile-specific enum types for states, inputs, and actions,
which were shown earlier. Also, the class encodes all transitions of the turn-
stile FSM via appropriate calls to the add method, as part of the constructor.
The initial state is also set up and the turnstile-specific handler is communi-
cated as well.

Figure 30 shows the code generation predicate for steppers. The predicate
refers to more elements of the Java language: several expression forms (e.g.,
‘null’), assignment statements, method calls, and class declarations. In a
final step, the constructed abstract syntactical representation is passed to
the pretty printer for Java.
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languages/fsml/java/Stepper.java
// Generated code
public class Stepper extends StepperBase<State, Input, Action> {

public Stepper(HandlerBase<Action> handler) {
this.handler = handler;
state = State.locked;
add(State.locked, Input.ticket, Action.collect, State.unlocked);
add(State.locked, Input.pass, Action.alarm, State.exception);
add(State.unlocked, Input.ticket, Action.eject, State.unlocked);
add(State.unlocked, Input.pass, null, State.locked);
add(State.exception, Input.ticket, Action.eject, State.exception);
add(State.exception, Input.pass, null, State.exception);
add(State.exception, Input.mute, null, State.exception);
add(State.exception, Input.release, null, State.locked);

}

}

Figure 29: Configuration of a stepper for the turnstile example.

7. The visual syntax of FSML

It remains to define the visual syntax of FSML, as it was illustrated in
Figure 1. A visual syntax definition may serve these major purposes: actual
representation (visualization) and editing. Indeed, we want this syntax to be
complemented by rendering support. We do not consider editing here.

The visualization in Figure 1 renders an FSM as a graph. There are
nodes and edges; both of them can be labeled; edges are directed; nodes
are of a certain shape (an ellipse here) and style (regular or filled). ??

represents represents the graph in the abstract (Prolog-based) syntax of a
simple graph description based on the DGL notation provided by the SlePro
project. DGL stands for ‘dot-based graph language’; see Appendix D for
this notation. Nodes are quadruplets of the form (Id , Label , Shape, Style);
edges are triplets of the form (FromId , ToId , OptionalLabel).

The DGL processor translates the graph into the concrete syntax of the
dot language of GraphViz 1; see ??. (That is, DGL can be viewed as a
subset of the DOT language.) The GraphViz tool directly renders the dot

1
http://www.graphviz.org/
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languages/fsml/to-java/stepper.pro
stepperOfFsm(Fsm, Text) :�

% Map transitions to calls to the stepper’s ”add” method
findall(S,
(
% Iterate over states and transitions
member(( , From, Ts), Fsm),
member((I, A, To), Ts),

EFrom = select(name(’State’), From), % Expression for source state
ETo = select(name(’State’), To), % Expression for target state
EI = select(name(’Input’), I), % Expression for input

% Expression for (optional) action
(A = [A1] �> AE = select(name(’Action’), A1); AE = null),

% Expression statement for ”add”
S = expression(call(add, [EFrom, EI, AE, ETo]))

),
Ss),

HA = assign(select(this, handler), name(handler)), % Handler assignment
SI = assign(name(state), select(name(’State’),locked)), % State initialization

% Stepper subclass
Class = class(public, false, ’Stepper’, [],
[typeapp(’StepperBase’,
[typename(’State’), typename(’Input’), typename(’Action’)])],

[constr(
public,
[(typeapp(’HandlerBase’, [typename(’Action’)]), handler)],
[HA,SI|Ss])]),

% Render the class
ppJavaDecl(Class, Text).

Figure 30: Code generation for stepper class.
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languages/fsml/dot/sample.term
(
% States
[
(locked,locked,ellipse,[filled]),
(unlocked,unlocked,ellipse,[]),
(exception,exception,ellipse,[])

],
% Edges
[
(locked,unlocked,[’ticket/collect’]),
(locked,exception,[’pass/alarm’]),
(unlocked,unlocked,[’ticket/eject’]),
(unlocked,locked,[pass]),
(exception,exception,[’ticket/eject’]),
(exception,exception,[pass]),
(exception,exception,[mute]),
(exception,locked,[release])

]
).

Figure 31: The FSM of Figure 1 in the abstract syntax of the DGL language.

specification as shown Figure 1.

8. Food for thought

Let us discuss some characteristics, limitations, or opportunities for al-
ternative or additional components. In this manner, we prepare for a good
number of experiments that could be carried out—either to learn more about
DSLs or to demonstrate other technologies and techniques:

Leverage a programming ecosystem The FSMLmodel of this document
directly relies on Prolog or language modeling notations that are in turn
implemented in Prolog, as part of the SlePro project. Alternatively,
one could model (implement) FSML also in some existing program-
ming ecosystem, e.g., in Java, Ruby, or Python, also subject to the
use of appropriate libraries, parser generators, and other tools. This
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languages/fsml/dot/sample.dgl
digraph G {

locked [label=”locked”, shape=ellipse, style=filled]
unlocked [label=”unlocked”, shape=ellipse]
exception [label=”exception”, shape=ellipse]
locked �> unlocked [label=” ticket/collect ”]
locked �> exception [label=” pass/alarm ”]
unlocked �> unlocked [label=” ticket/eject ”]
unlocked �> locked [label=” pass ”]
exception �> exception [label=” ticket/eject ”]
exception �> exception [label=” pass ”]
exception �> exception [label=” mute ”]
exception �> locked [label=” release ”]

}

Figure 32: The FSM of Figure 1 in the dot language.

may enable interesting comparison across programming languages and
ecosystems.

Leverage a language workbench Language modeling is readily addressed
by so-called language workbenches such as Rascal or Spoofax. Thus,
it would only be natural to exercise such workbenches for the present
DSL scenario. In fact, the overall domain of FSMs is generally a pop-
ular one, when it comes DSL modeling (implementation). Thus, some
similar model may readily exist for some of these workbenches.

Leverage model-driven engineering Another existing approach to lan-
guage modeling is based on model-driven engineering (MDE). For in-
stance, one could use EMF and GMF for language modeling, thereby
covering abstract and visual syntax for graphical editors. The actual
functionality (such as constraints, semantics, and code generator) could
leverage a programming language which readily collaborates with the
chosen MDE approach, e.g., Java in the case of EMF/GMF. Some of
this functionality could also be expressed with model transformations
in designated languages, e.g., ATL or QVT. Further, specific model-to-
text and text-to-model technologies may be leveraged in the context of
MDE.
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Concrete object syntax The FSML model of the present document lever-
ages abstract syntax for all the notations that need to be manipulated:
FSML, Java, and DGL. Some metaprogramming systems and language
workbenches also support concrete object syntax, e.g., Stratego and
TXL. In this manner, less syntaxes need to be defined, metaprograms
remain closer to the notation that one may be used for the manipu-
lated artifacts. In the future, support for concrete object syntax may
be added to SlePro.

Template-based code generation The FSMLmodel underlying the present
document leverages pretty-printing combinators for mapping abstract
to concrete syntax. In fact, these mapping components are not shown
in the document because they are concerned with languages other than
FSML, namely Java and DGL. Nevertheless, it may be worthwhile to
investigate other options for mapping abstract to concrete syntax—in
particular, template-based code generation or model-to-text transfor-
mations, as mentioned earlier in the context of MDE.

Alternative code generation schemes The code generator favors one par-
ticular scheme such that FSMs are essentially represented as data and
actions are to be plugged into FSM execution through appropriate han-
dlers. Several other schemes for the OO representation of FSMs are
known. For instance, transitions may also be represented as control-
flow code, i.e., by using if or switch statements dispatching on states
and inputs. Alternatively, states may also be thought of as objects with
transitions modeled as polymorphic methods. Without caring much
here about the pros and cons of these approaches, we could simply
want to study them from the technical point of view of code genera-
tion. In fact, we picked the data-centric approach, as it was obvious
that code generation is straightforward in this case.

An editor for FSML Language support may also include editing support
as in the sense of a structure editor for concrete textual syntax or a
graphical editor for concrete visual syntax (perhaps based on GMF, as
mentioned earlier).

A proper FSML-based application The value of the FSML language may
be more obvious, if we managed to demonstrate it in an actual appli-
cation such as a concrete turnstile system. One could be looking at
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embedded systems scenarios, for example.
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languages/egl/cs.egl
grammar : {rule}⇤ ;
rule : {’[’ label ’]’}? nonterminal ’:’ symbols ’;’ ;
[t] symbol : terminal ;
[n] symbol : nonterminal ;
[star] symbol : ’{’ symbols ’}’ ’⇤’ ;
[plus] symbol : ’{’ symbols ’}’ ’+’ ;
[option] symbol : ’{’ symbols ’}’ ’?’ ;
symbols : {symbol}⇤ ;
label : name ;
terminal : qstring ;
nonterminal : name ;

Figure A.33: EGL grammar of EGL grammars.

Appendix A. Grammar of EGL grammars

EGL was used for the concrete syntax definition of FSML in §2. EGL is
an EBNF-like notation. See Figure A.33 for a self-description of the grammar
notation.
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languages/esl/cs.egl
signature : { decl ’;’ }⇤ ;
[type] decl : ’type’ name ’=’ typeexpr ;
[symbol] decl : ’symbol’ name ’:’ args ’�>’ name ;
args : { typeexpr { ’x’ typeexpr }⇤ }? ;
typeexpr : factor cardinality ;
[term] factor : ’term’ ;
[atom] factor : ’atom’ ;
[integer] factor : ’integer’ ;
[float] factor : ’float’ ;
[number] factor : ’number’ ;
[boolean] factor : ’boolean’ ;
[tuple] factor : ’(’ typeexpr {’,’ typeexpr}+ ’)’ ;
[sort] factor : name ;
[star] cardinality : ’⇤’ cardinality ;
[plus] cardinality : ’+’ cardinality ;
[option] cardinality : ’?’ cardinality ;
[none] cardinality : ;

Figure B.34: EGL grammar of ESL signatures.

Appendix B. Grammar of ESL signature

ESL was used for the abstract syntax definition of FSML in §3. ESL is
a type-declaration notation inspired by algebraic signatures, term algebras,
and algebraic data types. See Figure B.34 for the concrete syntax of the
notation. ESL is also used in some of the appendix sections that follow.

27

http://github.com/slebok/slepro/tree/master/languages/esl/cs.egl


languages/java/as.esl
symbol class : visible x abstract x name x tpara⇤ x extends x member⇤ �> decl ;
symbol enum : visible x name x name+ �> decl ;
symbol public : �> visible ;
symbol protected : �> visible ;
symbol private : �> visible ;
type abstract = boolean ;
type name = atom ;
type tpara = name ;
type extends = type? ;
symbol constr : visible x mpara⇤ x statement⇤ �> member ;
symbol method : visible x time x type x name x mpara⇤ x statement⇤ �> member ;
symbol assignment : expression x expression �> statement ;
symbol expression : expression �> statement ;
symbol this : �> expression ;
symbol null : �> expression ;
symbol name : name �> expression ;
symbol select : expression x name �> expression ;
symbol call : name x expression⇤ �> expression ;
type mpara = (type, name) ;
symbol typename : name �> type ;
symbol typeapp : name x type⇤ �> type ;

Figure C.35: ESL signature for the abstract syntax of a Java subset.

Appendix C. Abstract syntax of a Java subset

See Figure C.35. The subset is assumed by the code generator of §6.
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languages/dgl/as.esl
type graph = (node⇤, edge⇤) ;
type node = (id, label, shape, style?) ;
type edge = (id, id, label?) ;
type id = atom ;
type label = atom ;
symbol box : �> shape ;
symbol ellipse : �> shape ;
symbol bold : �> style ;
symbol dotted : �> style ;
symbol filled : �> style ;

Figure D.36: ESL signature for the abstract syntax of DGL.

Appendix D. Abstract syntax of DGL

We used DGL in §7 to export FSMs as graphs in a manner that they
can be visualized. DGL is a simple graph description language. DGL stands
‘dot-based graph language’ to hint at the fact that the abstract syntax of
DGL can be (is) rendered in the dot language of Graphviz. The abstract
syntax of DGL is shown in Figure D.36.
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languages/fsml/tests/parserError.fsml
innnitial state locked {

ticket/collect �> unlocked;
pass/alarm �> exception;

}

state unlocked {

ticket/eject;
pass �> locked;

}

state exception {

ticket/eject;
pass;
mute;
release �> locked;

}

Figure D.37: A negative test case: Figure 2 with a syntax error; see ‘innnitial’.

languages/fsml/tests/illegalSymbol.input
[
foo % This is a not a valid input symbol

].

Figure D.38: A negative test case: an input for Figure 2 which contains an invalid input
symbol.

languages/fsml/tests/infeasibleSymbol.input
[
mute % This symbol is only feasible in the exceptional state

].

Figure D.39: A negative test case: an input for Figure 2 which contains an infeasible input
symbol in the pool position—the initial state ‘locked’ does not accept the ‘mute’ input.

Appendix E. Additional test cases for the specification

Let us add a few more negative test cases in addition to the illustrations
of constraint violation of §4. A simple parsing error is caused by the input of
Figure D.37. Figure D.38 and Figure D.39 demonstrate two major scenarios
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for failure of ‘simulation’ according to §5.

31


	Introducing FSML
	The concrete textual syntax of FSML
	The abstract syntax of FSML
	Constraints on the abstract syntax
	The reference semantics for FSML
	The code generator for FSML
	The visual syntax of FSML
	Food for thought
	Grammar of EGL grammars
	Grammar of ESL signature
	Abstract syntax of a Java subset
	Abstract syntax of DGL
	Additional test cases for the specification

