
© 2012, 101companies

Model-View-Controller
(MVC)

with Ruby on Rails

Software Languages Team
University of Koblenz-Landau

Ralf Lämmel and Andrei Varanovich

Freitag, 7. September 2012

© 2012, 101companies

MVC - a classic
definition

• The Model is the application object

• The View is its screen presentation

• The Controller defines the way the user
interface reacts to user input

Freitag, 7. September 2012

© 2012, 101companies

Model–View–Controller (MVC) is a computer software
design pattern that separates the representation of
information from the user's interaction with it. The model
consists of application data and business rules, and the
controller mediates input, converting it to commands for
the model or view. A view can be any output
representation of data, such as a chart or a diagram.
Multiple views of the same data are possible

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Freitag, 7. September 2012

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

© 2012, 101companies

The Model-View-
Controller Architecture

here:
server side

Freitag, 7. September 2012

© 2012, 101companies

What is Ruby on Rails?

• A web application development framework
written in the Ruby language.

• It makes the assumption that there is a
‘best’ way to do things, and it’s designed to
encourage that way – and in some cases to
discourage alternatives.

Freitag, 7. September 2012

© 2012, 101companies

Rails philosophy

• DRY – “Don’t Repeat Yourself” – suggests that writing
the same code over and over again is a bad thing.

• Convention Over Configuration – means that Rails
makes assumptions about what you want to do and how
you’re going to do it, rather than requiring you to specify
every little thing through endless configuration files.

• REST is the best pattern for web applications –
organizing your application around resources and
standard HTTP verbs is the fastest way to go.

Freitag, 7. September 2012

© 2012, 101companies

Ruby

Ruby is a dynamic, reflective, general-purpose object-
oriented programming language that combines syntax
inspired by Perl with Smalltalk-like features. It was also
influenced by Eiffel and Lisp.

http://en.wikipedia.org/wiki/Ruby_(programming_language

Freitag, 7. September 2012

http://en.wikipedia.org/wiki/Ruby_(programming_language
http://en.wikipedia.org/wiki/Ruby_(programming_language

© 2012, 101companies

Why Rails is relevant in the Web MVC context?

Because its build to enforce using MVC as a pattern.

Freitag, 7. September 2012

© 2012, 101companies

• Maps to a table in a database. By
convention, a model named Company will
map to the database table companies, and
the model will have a filename company.rb
within app/models folder.

Model

Freitag, 7. September 2012

© 2012, 101companies

Controller
• Responds to external requests from the

web server to the application, and
responds to the external request by
determining which view file to render

how to respond to
certain HTTP

requests

Freitag, 7. September 2012

© 2012, 101companies

Controller (II)

• Handles people-friendly URLs extremely well.

• Manages caching, which can give applications
orders-of-magnitude performance boosts.

• Manages sessions, giving users the
impression of ongoing interaction with our
applications.

Freitag, 7. September 2012

© 2012, 101companies

View
• In the default configuration of Rails is an erb

file. It is typically converted to output html
at run-time.

Ruby embedded
instead of PHP

Freitag, 7. September 2012

© 2012, 101companies

The Rails MVC

Freitag, 7. September 2012

© 2012, 101companies

DEMO
101implementation: rubyonrails

- Remember: previous demo was ‘black box’ (REST).
- Look into internals this time.
- Show details of MVC in this implementation.
- Explain some bits of Ruby on Rails philosophy.

Freitag, 7. September 2012

http://101companies.org/index.php/101implementation:rubyonrails
http://101companies.org/index.php/101implementation:rubyonrails

© 2012, 101companies

Companies::Application.routes.draw do
 resources :employees

 resources :departments do
 resources :departments
 resources :employees
 end

 resources :companies do
 resources :departments
 end

 get "home/index"

config/routes.rb

http://exampe.com/employees/

http://exampe.com/departments/

http://exampe.com/departments/:id

http://exampe.com/departments/:id/employees

http://exampe.com/companies/:id/
departments

http://exampe.com/ (HTTP GET only)

Freitag, 7. September 2012

http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/
http://exampe.com/employees/

© 2012, 101companies

rake routes

GET /employees(.:format) {:action=>"index", :controller=>"employees"}
POST /employees(.:format) {:action=>"create", :controller=>"employees"}
GET /employees/new(.:format) {:action=>"new", :controller=>"employees"}
GET /employees/:id/edit(.:format) {:action=>"edit", :controller=>"employees"}
GET /employees/:id(.:format) {:action=>"show", :controller=>"employees"}
PUT /employees/:id(.:format) {:action=>"update", :controller=>"employees"}
DELETE /employees/:id(.:format) {:action=>"destroy", :controller=>"employees"}

Freitag, 7. September 2012

© 2012, 101companies

departments_controller.rb

 # GET /departments/1
 # GET /departments/1.json
 def show
 @department = Department.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.json { render :json => @department }
 end
 end

view file
JSON/HTML

HTTP params

Freitag, 7. September 2012

© 2012, 101companies

view/departments/show.rb
<div class="headline"><h2>101companies Ruby on Rails Web App</h2></div>
<div class="content">
 <p id="notice"><%= notice %></p>
 <div class="attr">
	

 <p>
 	

 	

 Name:
 	

 	

 <%= @department.name %>
	

 </p>
 </div>
 <hr>
 <div class="attr">
 	

 <p>
 	

 	

 Manager:
 	

 </p>
 	

 <% @department.employees.each do |employee| %>
 	

 	

 <p>
 	

 	

 <%=
 	

 	

 	

 if (employee.isManager?)
 	

 	

 	

 	

 link_to employee.name, employee_path(employee)
 	

 	

 	

 end
 	

 	

 %>
 	

 	

 </p>
 	

 <% end %>
.....

Freitag, 7. September 2012

© 2012, 101companies

Summary

• how to use MVC design pattern to
structure your web applications,

• how Ruby on Rails helps to build web
applications using MVC and REST.

You learned ...

Freitag, 7. September 2012

© 2012, 101companies

Resources

• http://guides.rubyonrails.org/index.html

• Agile Web Development with Rails (4th
edition: http://pragprog.com/book/rails4/
agile-web-development-with-rails)

Freitag, 7. September 2012

http://guides.rubyonrails.org/index.html%5D(http://guides.rubyonrails.org/index.html
http://guides.rubyonrails.org/index.html%5D(http://guides.rubyonrails.org/index.html

