UNIVERSITAT
KOBLENZ - LANDAU

Fachbereich 4: Informatik

Reproducible Wrapper for
API Migration

Bachelorarbeit

zur Erlangung des Grades eines Bachelor of Science (B.Sc.)
im Studiengang Informatik

vorgelegt von

Malte Knauf

Erstgutachter: Prof. Dr. Ralf Limmel
Institute for Computer Science

Zweitgutachter: Andrei Varanovich
Institute for Computer Science

Koblenz, im August 2011

Erkldrung

Ich versichere, dass ich die vorliegende Arbeit selbstindig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein
Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. [J U

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. O O

(Ort, Datum) (Unterschrift)

Abstract

API migration refers to the change of a used API to a different API in a program. A
special case is called wrapper-based API migration. The API change is done with-
out touching the program but the old API is reimplemented by means of the from
now on used one. This so called wrapper has the interface of the reimplemented
API but uses the implementation of the new one. This is an interesting approach
because the wrapper can be used in each program, which uses the old API. To
make this approach reproducible we study a ranking-based method for implement-
ing a wrapper, where we always implement the method with the highest priority
depending on failing test cases. Thus, we can reconstruct each implementation
step.

We first develop an infrastructure to run and log test suites of Java projects that
use an API, which we want to change. We then build a wrapper for a given API
using the ranking-based approach.

Zusammenfassung

API Migration bezeichnet den Wechsel einer benutzten API eines Programms in ei-
ne andere. Eine spezielle Form ist die sogenannte wrapper-basierte API Migration.
In diesem Fall wird die API gewechselt, ohne das eigentliche Programm zu beriih-
ren. Sie wird unter Benutzung der neuen API reimplementiert. Dieser so genannte
Wrapper besitzt das Interface der alten API, benutzt jedoch die Implementierung
der neuen. Dies ist ein interessanter Ansatz, da der Wrapper in jedem Programm
eingesetzt werden kann, das bislang die alte API verwendet hat. Um diesen Vor-
gang reproduzierbar zu machen, entwickeln wir eine ranking-basierte Methode, um
einen Wrapper zu entwickeln. Hierbei implementieren wir abhingig von fehlschla-
genden Testfdllen immer die API-Methode mit der jeweils hochsten Prioritét. So
konnen wir jeden Implementierungssschritt rekonstruieren.

Im ersten Schritt entwickeln wir eine Infrastruktur, mit der wir Testsuites von
Java-Projekten starten und messen kénnen. Mittels dieser Basis konnen wir nun
die Ranking-Methode anweden, um einen Wrapper zu entwickeln.

Contents

1

Introduction 2
1.1 Wrapper-based API Migration 2
Method 2
Infrastructure 4
3.1 AntBuildFile 5
32 Aspect] ..o 5
33 Ranking 6
3.4 Annotation e e e e e e 7
3.5 Verification 7
Study 8
4.1 DOMvs. XOM e 8

4.1.1 Metricso e 8

4.1.2 Differences 11
Related Work 11
User Manual 13
A.1 Requirements 13
A2 Running L 13
Changed CDK Files 13

1 Introduction

Nowadays there are many APIs that belong to the same domain. One can use any
of them for the same task. The difference, however, may be the fact, that some
feature of one API is implemented in another way than the others or it is missing
at all. A problem can arise, if a program uses one API, which now cannot be
used any more, either because the development of it is retired or because of the
above mentioned implementation differences (e.g., he wants to use a feature that
is missing or falsely implemented). The programmer must adapt his program to
another API in the same domain, which will most likely affect large parts of his
code because he must edit each existing API call and change it to the new APL
This has to be done for every single program, that uses the old API. This change of
the used API is called API migration and the above example is a very ineffective
one.

1.1 Wrapper-based API Migration

There are several approaches to this issue. One way to do so is wrapper-based API
migration. The interface of the old API is wrapped around the implementation
of the new one. The actual program, that uses the old API, does not need to be
touched because it still can call the old interface. In a previous study [1] Thiago
Tonelli, Ralf Lammel and collaborators analysed the wrapper-based approach and
developed a wrapper for two given APIs.

The contribution of this work is to extend this approach in a way that it is repro-
ducible. That is, the wrapper should be easy to implement, clearly understandable
and easy to reconstruct with arbitrary API couples in the same domain. We take
an API couple in the XML domain and develop a wrapper with it. In the next sec-
tion we analyse an abstract method to gain reproducibility. In section 3 we present
an infrastructure for building a reproducible wrapper based on the method of the
previous section. In section 4 we apply our method and infrastructure to a specific
pair of APIs and develop a wrapper for it.

2 Method

Our aim is a reproducible wrapper. To limit the work we cannot just simply reim-
plement a whole API. Also this would make it difficult to find a reproducible
method for implementing the wrapper. Instead we take an existing program that
uses the APl we want to reimplement and we only implement API features that
are used in the program. To do so, we need to log API calls in order to know
which feature is used and which is not. If we furthermore specify in which or-
der we implement these features (and document this order) everyone can retrace
our implementation process and so our wrapper is reproducible. Figure 1 shows a
component diagram of our infrastructure.

program that uses the API

test suite

)_

O)>—

runs and logs

APl test suite

empty wrapper infrastructure

logging

Figure 1: Component diagram of the infrastructure

As seen in the diagram we need to specify the following steps:

1. We need a program that makes use of the old API. This could be any open
source project. As mentioned earlier we use this program to verify our wrap-
per.

2. This project needs a test suite which extensively uses this API. API features
can either directly be called from a test case or indirectly from a program
fragment which is tested within a test case. It does not need to use every
feature of the APL

. We start developing an empty wrapper. It should have the complete interface
of the new API but instead of implemented bodies each call to this wrapper
should raise a runtime error. That is, we can exchange it for the original API
in the project of step one and be still able to compile it. However, every API
calling test case should fail. This will be our the start of our implementing
process.

4. We build an infrastructure to track each API call and count succeeding and
failing test cases at runtime of the test suite. With this infrastructure it should
be possible to see, which API features are called in which test case and if
these tests fail or succeed. With these values we can analyse, which feature
per test case is most likely responsible for failing this test case and set up
a ranking that is sorted by frequency of these features. We hold the most
recently called API feature responsible for each test case, because it is likely
that otherwise many API features have the same ranking position. For exam-
ple we run a test suite with an empty wrapper. Some tests cases call the same
API features. These tests should fail directly after calling the first feature.
The calls are counted and displayed in the ranking. When we implement
the feature with the highest ranking position and run the test suite again, a
new API feature is probably called afterwards, which will now lead to the

failing of the test case. Because the test case still fails, both API features are
equally often called in the failing test cases and thus are on equal position
in the ranking. To overcome this problem, we give priority to the recently
called feature because it is the one we have not touched yet. Now we can
implement the wrapper using the following algorithm shown in figure 2:

verify
implementation
order

run
test suite

empty wrapper

Y

A

| annotate | implement first h 4
feature [ranked feature l: finished :l

Figure 2: Flow chart of the implementing algorithm

(a) Run the project’s test suite to get a ranking with the most likely failing
API feature.

(b) Implement it.
(c) Go on from step 1 if the ranking is not empty.

After successfully applying the algorithm the test suite should succeed.

5. To prove the correctness of the ranking-based development, we need to know
the implementation order of all implemented API features. We can achieve
this by numbering each of them, which will represent the stage of develop-
ment. The first feature will get position number 1, the second one position
number 2 and so on. To prove the correct next implementation step of an
arbitrary stage of development, we need to be able to fall back to this stage.
This can be done by switching off each body of an API feature with a posi-
tion number greater than the chosen stage. When we run the test suite after
switching off certain API features the ranking of this stage of development
should be shown. If the most likely failing API feature of this ranking is the
one that was implemented next (according to its position number), we have
proof that our ranking-based development was correct.

3 Infrastructure

In this section we will explain our developed infrastructure according to the re-
quirements of section 2 that is needed to start our ranking-based wrapper develop-
ment. We first choose our languages and tools to work with:

e Our programming language is Java

e Our test framework is JUnit
e Our build tool is Apache Ant
e Our analysing language and framework is AspectJ

As mentioned above we need a project (written in Java) with a test suite that
makes use of the API we want to reimplement. We chose Ant because many Java
projects are built with an Ant build script. So the build file of our infrastructure can
comfortably call the project’s build file. With the aspect oriented language Aspect]
we count every failing and succeeding test case of the test suite and notice each
API call. We also have functionality to switch API methods off. See subsection
3.2 for more detailed information on our use of Aspect].

3.1 Ant Build File

This section describes the main build file of our infrastructure that is responsible
for compiling and running everything related to this project, including our wrapper
and the Java project, which uses the wrapper. See appendix A on how to run it.

o This script lets us choose to run the project’s test suite either with its original
implementation of the used API, with an empty wrapper or with the imple-
mented wrapper. It simply copies the respective API jar into the directory,
where the original API was located before. In case of the implemented wrap-
per it will be compiled before. Afterwards the project’s ant file is called for
compiling the project and its test suite.

e We cannot use the original ant target to run the JUnit test because we have to
weave the aspects here and provide functionality to produce an output with
the results of our measurements. We use an own target instead, which runs
the test suite. We also use a master test suite, which calls the project’s test
suite(s). This is necessary because we need to produce an output at the end
of the test run without touching existing test suites.

Each test case of the suite (or at least each test case that uses API methods)
should succeed with the original APIL. If not, we have to ignore the failing tests to
have a proper baseline. With the empty wrapper none of the API calling test cases
should succeed.

3.2 Aspect]

We use Aspect] to log each API call in the running JUnit test suite and to log each
test case run. We could have done that by explicitly writing the same logging code
in each test case and API method but this would be very ineffective. Since this is a
classical crosscutting concern and aspect oriented language like Aspect] provides

9

-
N}

an obvious solution. With Aspect] for logging we don’t need to touch existing code
of the CDK and we don’t need to know where API calls are made.

Because the source code of some methods that use API methods is not available
(since some external jars may also use the API), we have to binary weave our
aspects into the bytecode. We use Load-Time Weaving because otherwise we would
have had to manually provide every single jar of the project to the weaver.

<target name="test">

<junit printsummary="yes" haltonfailure="no" fork="yes" maxmemory="1500M">

<jvmarg value="—javaagent:${lib. dir }/ aspectjweaver . jar "/>

<test name="main.CDKMastersuite"

haltonfailure ="no"

todir =" results "

outfile =" result ">

<formatter type="brief" />
</test>
</ junit >
</target>

Listing 1: Ant Target For Load-Time Weaving

In this Ant target (which is the one that starts the test suite) we provide the
Aspect]-Weaver to the Java VM. We also provide an aop.xml to the weaver, which
required for Load-Time Weaving. In this XML file we specify which packages and
classes we want to weave.

With this base we count succeeding and failing test cases. These numbers are
necessary for the ranking (see next section). We use a pointcut on each method that
is annotated with a @org.junit. Test annotation, i.e., each Junit 4 test case.

e With a before advice we increment the total number of test cases.

e With an after advice we decide if the just advised test case succeeded or
failed, based on a possibly thrown and a possibly expected exception. No
thrown and no expected exception or thrown and expected exception are the
same is interpreted as success; each other case is interpreted as failure.

3.3 Ranking

To set up a ranking of failing API methods, we need to store the name of each API
call. To do so, we use another pointcut on each method and constructor within the
APT’s package:

e With an before advice we store the signature’s name of each API method,
which is called within the same test case in an initially empty stack named
apiCallsPerTest. The lastly called API method will be on top of the stack.

e After returning or throwing of the test case we add each called API method
within the stack to a HashMap overallFeatures, which maps method signa-
tures to a count of succeeding and failing calls. According to the result of
the test case (succeeded or failed), the respective count of any called API
method is incremented. The next test case will again start with an empty
HashMap (see listing 2).

1 public static void updateFeatureMap(String testResult) {
2 ExecutionCount executions;

for (String feature : apiCallsPerTest) {

6 if (! overallFeatures.containsKey(feature)) {
7 executions = new ExecutionCount();
} else {
9 executions = overallFeatures.get(feature);
}
12 executions.count++;
3 if (testResult.equals("succeeded")) executions.successes++;
14 else if (testResult.equals(" failed ")) executions. failures ++;

else executions.errors++;

17 overallFeatures.put(feature, executions);

}

apiCallsPerTest.clear ();
}
Listing 2: Ranking

3.4 Annotation

e In the ranking-based process each implemented method is annotated with
an annotation @ Ranking(position=<value>). The value of the first imple-
mented method is 1 and is incremented for each next method.

e The annotation @ Wrapping is used for every auxiliary method and construc-
tor within the API, which is not a public API method. These methods are
not shown and counted in the ranking.

3.5 Verification

For the functionality to switch off certain API methods we also use Aspect]. We
take a pointcut for API methods, which are annotated with the @Ranking-annotation
and throw a runtime exception 7iot implemented yet " in a before advice, if the rank-
ing number is equal to or greater than a given threshold.

after (): rankingMethods() {

if (Results.rankingThreshold = —1) {
String method = thisJoinPointStaticPart.getSignature(). toString ();
for (int i = Results.rankingThreshold—1; i < Results.ranking.length; i++) {
if (Results.ranking[i]. equals(method)) {
throw new UnsupportedOperationException("not yet implemented");
}
}
}
}

Listing 3: Verification Advice

We do not have reflection-based access to the position number within the @Ranking-

annotation, because the heavy use of thisJoinPoint (which is required for reflection)
uses too much memory in large test suites. Instead we manually provide every im-
plemented method to an array ranking in which the first element represents the first
implemented method and so on.

4 Study

The API pair of our study is XOM' and DOM?. We used the same Java project
named CDK3 as in [1] because it uses the XOM API and especially makes use of
it in its test suite. Some test cases that use XOM methods fail with original XOM
so we ignore them by annotating them with the JUnit 4 @/Ignore annotation. We
also slightly changed the Ant build script of the CDK in order to call it correctly
with our own build script. See appendix B for the differences between the original
and the changed files of the CDK.

4.1 DOM vs. XOM

In the following sections we first compare the two APIs in terms of metrics to get
an overview of their complexity. We then present a mapping from DOM to XOM,
that was required to develop the wrapper. After that we

4.1.1 Metrics

Table 1 and 2 show the numbers of public types and exceptions of each package of
the XOM and DOM API. In the CDK only types of the nu.xom package are used.
Table 3 shows the mapping of each used XOM type to the respective type of DOM.
One can see that not every XOM type can be directly mapped to a type of DOM.

'XOM version 1.2.6, Link to the APIdocs: http://www.xom.nu/apidocs/

2w3c DOM. Part of Java SE 6, Link to the APIdocs:
http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

3Chemistry Development Kit, Link: cdk.sourceforge.net/

Package Name #Types | #Exceptions

nu.xom 17 18
nu.xom.canonical | 1 1
nu.xom.converters | 2 0
nu.xom.xinclude 1 8
nu.xom.xslt 1 1

Table 1: XOM Packages

Package Name #Types | #Exceptions
org.w3c.dom 27 1
org.w3c.dom.bootstrap | 1 0
org.w3c.dom.events 7 1
org.w3c.dom.ls 10 1
nu.xom.xslt 1 1

Table 2: DOM Packages

XOM type DOM type #reimplemented
XOM features
nu.xom.Attribute | org.w3c.dom.Attr 1/20
nu.xom.Builder javax.xml.parsers.DocumentBuilder | 3/15
nu.xom.Document | org.w3c.dom.Document 1/15
nu.xom.Element org.w3c.dom.Element 12/38
nu.xom.Elements 2/2
nu.xom.Text org.w3c.dom.Text 0/9

Table 3: Mapping of XOM types to DOM types

nu.xom.Elements, cannot be mapped to a type of DOM because there is no such
type in DOM. Because it is simply a collection of Element types, it can easily be
mapped to java.util.ArrayList. The third column of table 3 shows the number of
XOM features (constructors and methods) per type that are used in the CDK and
therefore reimplemented and the overall number of features.

XOM Ranking Table 4 shows the development order of the used XOM API
methods and the ranking for the first five implemented methods.
For illustration we show the ranking of the first five implementations:

1 nu.xom.Builder() > count: 1412 | successes: 556 | failures : 24 | errors: 832
Because only one feature is avaiable in the ranking, we choose it.

1 Document nu.xom.Builder.build(Reader) > count: 703 | successes: 278 | failures: 12 | errors: 413
> nu.xom.ParentNode() > count: 706 | successes: 278 | failures: 12 | errors: 416

s Document nu.xom.Builder.build(InputStream) > count: 3 | successes: 0 | failures: 0 | errors: 3

2 nu.xom.Node() > count: 706 | successes: 278 | failures: 12 | errors: 416

Method or Constructor Name

nu.xom.Builder()

Document nu.xom.Builder.build(Reader)

Element nu.xom.Document.getRootElement()

String nu.xom.Element.getQualifiedName()

String nu.xom.Element.getBaseURI()

Elements nu.xom.Element.getChildElements()

int nu.xom.Elements.size()

Element nu.xom.Elements.get(int)

String nu.xom.Element.getNamespaceURI()

Attribute nu.xom.Element.getAttribute(String, String)
String nu.xom.Attribute.getValue()

Element nu.xom.Element.getFirstChildElement(String, String)
String nu.xom.Element.getLocalName()

String nu.xom.Element.getValue()

Elements nu.xom.ElementgetChildElements(String, String)
String nu.xom.Element.getAttribute Value(String)

Attribute nu.xom.Element.getAttribute(int)

String nu.xom.Element.toXML()

Document nu.xom.Builder.build(InputStream)

Table 4: Development Order of XOM Methods

ParentNode and Node are two abstract classes, so their constructor cannot be imple-
mented and will be ignored in the ranking. build(Reader) will now implemented.

1 Element nu.xom.Document.getRootElement() > count: 703 | successes: 278 | failures: 12 | errors: 413
> nu.xom.ParentNode() > count: 706 | successes: 278 | failures: 12 | errors: 416

; Document nu.xom.Builder.build(InputStream) > count: 3 | successes: 0 | failures: 0 | errors: 3

+ nu.xom.Node() > count: 706 | successes: 278 | failures: 12 | errors: 416

The next method will be getRootElement().

1 nu.xom.ParentNode() > count: 706 | successes: 278 | failures: 12 | errors: 416

> Document nu.xom.Builder.build(InputStream) > count: 3 | successes: 0 | failures: 0 | errors: 3

s String nu.xom.Element.getQualifiedName() > count: 703 | successes: 278 | failures: 12 | errors: 413
2 nu.xom.Node() > count: 706 | successes: 278 | failures: 12 | errors: 416

The next one is getQualifiedName().

1 String nu.xom.Element.getBaseURI() > count: 703 | successes: 278 | failures: 12 | errors: 413
> nu.xom.ParentNode() > count: 706 | successes: 278 | failures: 12 | errors: 416

s Document nu.xom.Builder.build(InputStream) > count: 3 | successes: 0 | failures: 0 | errors: 3
« nu.xom.Node() > count: 706 | successes: 278 | failures: 12 | errors: 416

And now getBaseURI().
With this procedure every method will be implemented.

10

4.1.2 Differences

The main difference between DOM and XOM is the fact that XOM is constructor-
based while DOM uses the factory pattern to construct objects. Because we reim-
plement the XOM API with DOM we can call a DOM factory inside a XOM
method or constructor and just return or store the constructed object.

public Builder() {

2 factory = javax.xml.parsers.DocumentBuilderFactory.newlnstance();
factory .setNamespaceAware(true);

4 try {

5 builder = factory .newDocumentBuilder();

.

catch (javax.xml.parsers.ParserConfigurationException e) {
}
o}

Listing 4: Wrapper Constructor Builder

In listing 4, which is the XOM Builder constructor of the implemented wrapper,
one can see that we first need a factory object, which then creates a DOM Builder
object. Another difference between XOM and DOM is the distribution of the API
classes. All XOM classes are located inside the nu.xom package whereas the DOM
classes are located inside the org.w3c.dom package but depend on classes within
different packages. Table 3 shows that javax.xml.parsers is used to reimplement
XOM. In listing 4 some of these javax-Classes are used.

Most XOM reimplementations are pure delegations of the equivalent DOM
methods or need just a few adaptations like in listing 5:

1 public final String getNamespaceURI() {

2 String namespaceURI = wElement.getNamespaceURI();
if (namespaceURI == null) {

4 return "";

5 } else {

return namespaceURI;

7 }
o)
Listing 5: Wrapper Method getNamespaceURI

This is a getter for the namespace URI of a XOM element. If available the URI is
simply returned by the equivalent DOM method. But if not it returns null whereas
the XOM method should return an empty string. So we need to extend the delega-
tion a bit.

5 Related Work

As mentioned earlier [1] analysed an API couple and made a wrapper for it. [15]
extended the work by studying design patterns for wrapper-based API migration.

11

There are several alternative approaches to the concern of migrating and adapting
software. One approach is called rwinning [11], where changes of the code are
specified as mappings, which can be applied to the program or the new APIL. An-
other API mapping analysis (this time from one language to another) is discussed
in [16]. [10] is a graph-based approach to compare two given APIs (or to versions
of the same API) and makes recommendations on how to adapt to the new APIL.
[5] studies refactoring and refactoring-based migration tools in the context of AP/
evolution, which is API migration to another version of the same API. Wrapping
is also used for different purposes. [2] describes wrapper-based methods for mi-
grating legacy software using Web Services. The interface that receives and sends
messages will be wrapped to understand new protocols. [3], [7], [6] and [9] analyse
and develop tools to automatize wrapping processes. [13] describes methods for
reengineering program interfaces as a preliminary stage to wrapping them. Trac-
ing in unit testing with aspect oriented languages is also used for related purposes
in different domains. [14, 4] analyse ways to debug software by means of these
two tools. A graph-based traceability approach is discussed in [12]. [8] focuses on
developing and creating automated traceability tools.

12

A User Manual
A.1 Requirements
e Java SE 6 JDK must be installed
e Apache Ant 1.8 must be installed
e JUnit 4 must be available in Ant classpath

e aspectjrt.jar (Aspect] Runtime 1.6) must be available in Ant classpath

A.2 Running

The Ant build file to run the project is located in the project’s root directory dom-
as-xom/build.xml. In this directory run Ant with:

e ant run_cdk_original to run the CDK test suite with the original xom API.

e ant run_cdk_wud to run the CDK test suite with our wrapper in develop-
ment (wud).

e ant run_cdk_empty to run the CDK test suite with the empty wrapper. That
is, each API method will throw an exception.

To switch off each API methods in our wrapper, which is equal or greater
than a given value add -Dposition=<value> between ant and the target, e.g., ant
-Dposition=10 run_cdk_wud. This only works with the target run_cdk_wud.

Running the test suite can take up to 30 minutes. After finishing an output
result.txt is created at dom-as-xom/results, which contains the measurements of
Aspect].

B Changed CDK Files

CDK/build.xml:

e Line 263 and 268: added fork="true" and dir="." attributes to java task

13

The following test cases have been ignored because they failed with the original
XOM:

e org.openscience.cdk.io.cml.CMLRoundTripTest

— testlsotope_ExactMass()
— testlsotope_Abundance()

e org.openscience.cdk.io.cml.CML2Test
— testSFBug1085912_1()

e org.openscience.cdk.gsar.descriptors.atomic.IPAtomicLearningDesciptorTest
— testFluorobenzene()

e org.openscience.cdk.qsar.descriptors.atomic.PartialPiChargeDescriptorTest

— testPartialPiChargeDescriptoCharge_2()
— testPartialPiChargeDescriptoCharge_3()

e org.openscience.cdk.gsar.DescriptorEngineTest

— testAvailableClass()

14

References

[1]

(2]

(3]

[9]

Thiago Tonelli Bartolomei, Krzysztof Czarnecki, Ralf Lammel, and Tijs van
der Storm. Study of an API migration for two XML APIs. In Postproceedings
of Software Language Engineering (SLE 2009), LNCS. Springer, 2010.

Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio Tra-
montana. A wrapping approach for migrating legacy system interactive func-
tionalities to service oriented architectures. J. Syst. Softw., 81:463—-480, April
2008.

Chia-Chu Chiang. Automated software wrapping. In Proceedings of the 45th
annual southeast regional conference, ACM-SE 45, pages 59—64, New York,
NY, USA, 2007. ACM.

Wouter De Borger, Bert Lagaisse, and Wouter Joosen. A generic and reflec-
tive debugging architecture to support runtime visibility and traceability of
aspects. In Proceedings of the 8th ACM international conference on Aspect-
oriented software development, AOSD ’09, pages 173-184, New York, NY,
USA, 2009. ACM.

Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In
Proceedings of the 21st IEEE International Conference on Software Mainte-
nance, pages 389-398, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

Israel Gold and Uri Shani. Wrapping dce/osf client/server applications. In
Proceedings of the USENIX Applications Development Symposium Proceed-
ings on USENIX Applications Development Symposium Proceedings, pages
1-1, Berkeley, CA, USA, 1994. USENIX Association.

M. Li, O. F. Rana, M. S. Shields, and D. W. Walker. A wrapper generator for
wrapping high performance legacy codes as java/corba components. In Pro-
ceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing *00, Washington, DC, USA, 2000. IEEE Computer Society.

Patrick Méder, Orlena Gotel, and Ilka Philippow. Enabling automated trace-
ability maintenance through the upkeep of traceability relations. In Proceed-
ings of the 5th European Conference on Model Driven Architecture - Founda-
tions and Applications, ECMDA-FA °09, pages 174-189, Berlin, Heidelberg,
2009. Springer-Verlag.

Ken Martin. Automated wrapping of a c++ class library into tcl. In Proceed-
ings of the 4th conference on USENIX Tcl/Tk Workshop, 1996 - Volume 4,
pages 1616, Berkeley, CA, USA, 1996. USENIX Association.

15

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan
Nguyen, Miryung Kim, and Tien N. Nguyen. A graph-based approach to
api usage adaptation. In Proceedings of the ACM international conference on
Object oriented programming systems languages and applications, OOPSLA
’10, pages 302-321, New York, NY, USA, 2010. ACM.

Marius Nita and David Notkin. Using twinning to adapt programs to alter-
native apis. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 205-214, New York,
NY, USA, 2010. ACM.

Hannes Schwarz, Jirgen Ebert, and Andreas Winter. Graph-based traceabil-
ity: a comprehensive approach. Softw. Syst. Model., 9:473-492, September
2010.

Harry M. Sneed. Program interface reengineering for wrapping. In Proceed-
ings of the Fourth Working Conference on Reverse Engineering (WCRE ’97),
pages 206—, Washington, DC, USA, 1997. IEEE Computer Society.

John Stamey and Bryan Saunders. Unit testing and debugging with aspects.
J. Comput. Small Coll., 20:47-55, May 2005.

Thiago Tonelli, Krzysztof Czarnecki, and Ralf Lammel. Swing to SWT and
back: Patterns for API migration by wrapping. In 26th IEEE International
Conference on Software Maintenance (ICSM 2010), September 12-18, 2010,
Timisoara, Romania, pages 1-10. IEEE Computer Society, 2010.

Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang.
Mining api mapping for language migration. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE "10, pages 195-204, New York, NY, USA, 2010. ACM.

16

	Introduction
	Wrapper-based API Migration

	Method
	Infrastructure
	Ant Build File
	AspectJ
	Ranking
	Annotation
	Verification

	Study
	DOM vs. XOM
	Metrics
	Differences

	Related Work
	User Manual
	Requirements
	Running

	Changed CDK Files

