Static and Runtime API Usage Analysis on .NET

J

Rufus Linke

18. August 2011

37



Outline

© Introduction

© Methodology

© Results

@ Conclusion and Further Work

/37



Introduction

Introduction



Introduction

Overview

Analysis of

@ the shape of existing APIs.

In terms of

37



Introduction

Overview

Analysis of
@ the shape of existing APIs.
@ their usage by "projects in the wild.”

In terms of

37



Introduction

Overview

Analysis of

@ the shape of existing APIs.

@ their usage by "projects in the wild.”
In terms of

@ reusability of APls.

37



Introduction

Overview

Analysis of

@ the shape of existing APIs.

@ their usage by "projects in the wild.”
In terms of

@ reusability of APls.

@ OO-specific usage.

37



Introduction

Overview

Analysis of

@ the shape of existing APIs.

@ their usage by "projects in the wild.”
In terms of

@ reusability of APls.

@ OO-specific usage.

@ general acceptance and coverage.

37



Introduction

Motivation

@ provide understanding of existing APl design

37



Introduction

Motivation

@ provide understanding of existing APl design

@ support research on API migration

37



Introduction

Motivation

@ provide understanding of existing APl design
@ support research on API migration

o facilitate development of new APls

37



Introduction

Motivation

provide understanding of existing API design
support research on API migration

facilitate development of new APls

show up refactoring options

37



Introduction

Contributions

@ combined static and dynamic analysis of APl design and usage

6 /37



Introduction

Contributions

@ combined static and dynamic analysis of APl design and usage

@ application of analysis to a corpus of selected open-source software

6 /37



Introduction

Contributions

@ combined static and dynamic analysis of APl design and usage
@ application of analysis to a corpus of selected open-source software

@ composition of metrics that are suitable to measure API related
software usage

6 /37



Methodology

Methodology



Methodology

Overview

Explorative analysis approach:

© framework design analysis

NET Framework

extraction

Framework Design Metrics

interpretation

Candidates / Expectations

37



Methodology

Overview

Explorative analysis approach:

.NET Framework Project Corpus
extraction lextracuen
@ framework design analysis
. Framework Design Metrics API Usage Metrics
@ framework usage analysis
interpretation
verification

Candidates / Expectations






Methodology

Corpus
350000 - - - - - - T T T T T T T T T T T T 30000
X Number of IL Instructions
¢ Number of Calls to External Methods x
300000 .

425000
250000 - 2
4
420000 £
£ 2
£ Z
2200000 . £
2 %
= 5]
2 x 115000 ¢
: £
5150000 - 9
E ) x 2 s
Z 5
x 110000 E
. 5
100000 -

% .
0000 5000
r ‘ .
+ . . : X X X x 1
[ x x ¢
X ¢
0 . . . . . . . . . . . . . . . . 0
S N < 3 N 5 & D
& ¢ & S &S
A & & ey
N A

11/37



Methodology

API

APIs are defined by their namespace.
Namespaces are grouped for easier handling.

12 /37



Methodology

API

APIs are defined by their namespace.
Namespaces are grouped for easier handling.

Example

The XML API is covered by the namespaces
@ System.Xml
@ System.Xml.Schema
@ System.Xml.Serialization

All these namespaces are grouped and represented as
@ System.Xml.*

12 /37



Methodology

Corpus

Spring NET
Nt
it
Nt

Nhibernate
prism

Windsor
Monakail
CasteCore
Unity
oginet
Joon NET
Mog

MEF
Lucene Net
AciveRecord
Rhino Mocks

SharpZipib

%
El
z
2
2
u
u
x
»
2
2
2
x
18
7
1
25 30

15 20
Number of Referenced APIs

13/37



Methodology

APls

API| Usage J

The term “APIl usage” refers to “usage by the developer”.

14 /37



Methodology

APls

API| Usage

The term “APIl usage” refers to “usage by the developer”.

Example

class SomeClass { public SomeClass() { } }

Implicitly calls System.Object::.ctor() = not API usage.

14 /37




Results

Results



.NET Framework

Design Metrics

General statistics
@ namespaces: 74 (3 with only sealed types)
@ number of classes: 10457 (4295 sealed classes)

@ interfaces: 957

16

37



Corpus
Usage Metrics

Specialization of types from the .NET APIs

System
System Collections

System. Windows Forms.*
System Web.*

System. ComponentModel *
SystemIO.*

System Collections ObjectModel
System Collections. Generic
System Configuration.*

System Ling.*

System Xml.*

System Collections Specialized
System Resources.*

System Runtime Remoting.*
System SecurityCryptography*
System Windows.*

System Diagnostics.*
System.Threading.*

System Runtime Serialization.*

0 50 100 150 200 250 300 350
Number of Derived Project Types

17 /37



.NET Framework

Design Metrics

General statistics
@ namespaces: 74 (3 with only sealed types)
» 19 namespaces have types that were specialized (26,76%)

@ number of classes: 10457 (4295 sealed classes)

@ interfaces: 957

18 /37



Corpus
Usage Metrics

.NET types specialized by corpus

Syster Object st 1
System.Collections CollectionBase | 35 ]

System EventArzs [N 25 ]

System.ApplicationException (G 25 ]

System Windows.Forms Form | 17 ]

System ComponentModel TypeConverter ERTN] 17 B
System.Collections ObjectModel Collection’! ER] 12 ]
System. Windows. Forms UserConteol [ 11 ]
System.10.Stream [N 11 4

System.Collections Hashtable [N 11 ]

System 0 TextWriter [N § ]

System.Ling Expressions ExpressionVisitor BN 7 ]
System SystemException [ 7 ]

System Collections Generic.List' [ 7 ]
System.ComponentModel EnumConverter [ 6 ]
System. Web. UL Control ] 5 ]

System I0.IOException [ 5 ]

System Collections. ArrayList [ 5 ]

System Collections Generic Dictionary’2 [ 5 ]
System.Web.ULWebControls WebControl [ 4 ]

System Configuration ConfigurationElement B 4 ]
System Configuration ConfigurationElementCollection ] 4 ]
System Ling Expressions Expression [ 4 ]
System.Collections ObjectModel KeyedColection'2 B 4 ]
System Resources ResourceManager [B 3 ]
System.Configuration. ConfigurationSection [H 3
System Runtime Remoting Proxics. RealProxy ] 3 ]

System.Web.ULPage [l 3 1

2 10 60 80 100 120 140
Number of Derived Project Types




.NET Framework

Design Metrics

General statistics
@ namespaces: 74 (3 with only sealed types)
» 19 namespaces have types that were specialized (26.76%)
@ number of classes: 10457 (4295 sealed classes)
» 100 types are specialized (1.62%)

@ interfaces: 957

20 /37



Corpus
Usage Metrics

Implemented interfaces

Syt Cloncoc E— 55

System Collections Collecton, EN 7
System Runtime Seializaton ISeriaizable ENR] 35
System Collections Generie Collcton'! ENNNY 3+
System Collections Dictionary ENY 25
System Collections IComparer N 25
System Collections List [ 21
System IServiceProvider (I 18
System Runtime Serialization IDeseralzationCallback. [N 16
System Equatable’t [I 15
System Collections Dictionary Enumerator [B 14
System IComparable [BN 14
System Configuration IConfigurationSectionHandler [ 13
= 5

System Collections Generic IEquality Comparer'!. [l 12

System Collections Generic IDictionary

System ComponentModel NotfyPropertyChanged B 10
System Callections Generic List1 [Bl] 10
System. ComponentModel Design IServiceContainer 8] 7

System Runtime Seraization IbjectReerence [} 7

System Wb IHttpModue [ 7
System Web IHitpHandler [ 6

System.Collections GenericIComparer f| 5

System.ComponentModel IChangeTracking

System ComponentModel IRevertibleChangeTracking
System ComponentModel IEditableObject [ 5

L
150 200 250 300
Number of Implementations

21/37



.NET Framework

Design Metrics

General statistics
@ namespaces: 74 (3 with only sealed types)
» 19 namespaces have types that were specialized (26.76%)
@ number of classes: 10457 (4295 sealed classes)
» 100 types are specialized (1.62%)
@ interfaces: 957
» 70 interfaces are implemented (7.31%)



Corpus

Usage Metrics

Compiler generated interface implementations

A simple number generator in the form of an IEnumerable’ 1 can be
generated with the following code:

IEnumerable<int> GetSomeNumbers (int num)

{

Random r = new Random() ;
for (int i = 0; i < num; i++)
{

yield return r.Next();

23 /37



Corpus
Usage Metrics

Implemented interfaces (without compiler generated)

System IDisposable
System.Collections.IEnumerable
System .Collections.IEnumerator
System.Collections.Generic.I[Enumerable’l
System.Collections.Generic.IE: “1

System.ICloneable
System.Collections.ICollection

tem.Runtime.

System.Collections Generic.ICollection'1
System.Collections.IDictionary
System.Collections.IComparer

System.Collections IList

System.IServiceProvider

ystem Runtim I Callback
System IEquatable’l

System Collections.IDictionaryEnumerator
System.IComparable

ystem.Ci IC a
System Collections.Generic.IDictionary’2
System Collections Generic.IEqualityComparer'1

tem.C otifyPropertyChanged 1
System.Collections. Generic.IList'l Jill 1 g
System ComponentModel Design.IServiceContainer Ji§ 7 g
ystem.Runti 101 7 |
System. Web.IHttpModule |7 g
System Web.IHttpHandler il 6 g
System.Collections. Generic.IComparer'l |15 g
System.ComponentModel IChangeTracking |15 g
tem.C ibleChangeTracking |15 B
System.ComponentModel IEditableObject i1 5 g

. . . . . .
0 50 100 150 200 250 300 350

Number of implementations
24 /37



.NET Framework

Design Metrics

Abstractness of .NET namespaces

Namespace ConcreteTypes AbstractTypes Abstractness
Accessibility 1 6 0.86
System.Dynamic 4 16 0.80
System.AddIn.* 14 27 0.66
System.Collections 9 14 0.61
System.Runtime.InteropServices.x* 68 80 0.54
Microsoft.VisualC.x* 21 17 0.45
System.Collections.Generic 14 11 0.44
System.Collections.Concurrent 5 3 0.38
System.Security.AccessControl 33 17 0.34
System.Runtime.Remoting.* 108 54 0.33
System.Runtime.Caching.* 14 7 0.33
System.Runtime.ConstrainedExecution 2 1 0.33
System.Xaml.* 37 16 0.30
System.Text 17 7 0.29
System.ComponentModel. * 280 114 0.29
System.Runtime.Serialization.* 46 18 0.28
System.Security 19 7 0.27
Microsoft.JScript.* 140 51 0.27
System.Ling.* 39 14 0.26
System.IdentityModel.* 67 23 0.26

25 /37



Corpus
Usage Metrics

Comparison of API abstractness to number of specializations

System Collectons
System Collectons Generic
System Runtime Remoting.*
System ComponentModel*
System Runtime Seralization.*
System Ling*

System X+

System Collectons Specialized
System Collectons. ObjectModel
System Security Cryptography.*
System Configuration.”

System Windows.*

System Web.*

System

System Resources.*

SystemI0+

System Diagnostics."

System Windowes. Forms.*

Systom Threading*

019

50

100

150 200
Number of Subtypes in Projects

250

300

26 /37



.NET Framework

Design Metrics

Unimplemented abstract types

System.Web.*

System Activities*
Microsoft VisualBasic.*
System. Addln *
MicrosoftJScript.*

System Dynamic

System Runtime Remoting.*
System. Workllow:*

mi.
System Xml.*
System Data.*
System
System EnterpriscServices *
System Runtime Serialization.*
Microsoft Build.*
System ServiceModel*
System Windows Forms.*
System Configuration *
System Collections
System Transactions."
System.Drawing.*
System Security.AccessControl
ystem Security
Accessibi
System Runtime Durablelnstancing
System IdentityModel.*

s CodeDor

Microsoft VisualC.*
System.Xaml.*

H

System Runtime Caching.*

System Management.*
System.IO:

System Reflection.*

System Security. Authentication.*

‘System Collections Specialized.
System Net.

Microsoft SqiServer Server

System.Security.Cryptography.*

System.Diagnostics.*

20
Numl

30 10 50
ber of Unimplemented Abstract Types




Corpus
Usage Metrics

Previously unimplemented abstract types

uuuuuuuuuuuuuugauuuguﬁuwwwww

TR T T

30 0 50 60
Number of Types
28 /37

10 20



Corpus
Usage Metrics

Receiver Types
@ static receiver type

@ runtime receiver type

29 /37



Corpus
Usage Metrics

Receiver Types
@ static receiver type

@ runtime receiver type

Example

Exception ex = new InvalidOperationException();
string s = ex.ToString();

29 /37



Corpus
Usage Metrics

Receiver Types
@ static receiver type

@ runtime receiver type

Example

Exception ex = new InvalidOperationException();
string s = ex.ToString();

static receiver type: Exception
runtime receiver type: InvalidOperationException

29 /37



Corpus
Usage Metrics

Late-bound methods

Static Data Additional Runtime Data

Namespace Methods Methods % Public API % Internal API % Project
System 493 506 24.90 18.38 56.72
System.Collections 130 488 22.75 32.17 45.08
System.Collections.Generic 105 327 10.70 18.65 70.64
System.Reflection.* 233 111 0.90 99.10 0.00
System.Data.* 123 97 77.32 0.00 22.68
System.Xml.* 354 82 45.12 54.88 0.00
System.I0.x* 203 51 45.10 17.65 37.25
System.ComponentModel. * 79 25 8.00 8.00 84.00
System.Ling.* 55 16 37.50 50.00 12.50
System.Runtime.Remoting.* 18 12 0.00 100.00 0.00
System.CodeDom. * 47 9 66.67 33.33 0.00
System.Text 44 9 77.78 22.22 0.00
System.Configuration.x* 31 8 25.00 12.50 62.50
System.Net.* 71 7 100.00 0.00 0.00
System.Windows.Forms.* 446 3 0.00 100.00 0.00
System.Web.* 382 3 66.67 33.33 0.00
System.Security.Principal 8 3 100.00 0.00 0.00
System.Windows. * 34 2 0.00 0.00 100.00
System.Runtime.Serialization.* 25 2 50.00 0.00 50.00

30



Corpus
Usage Metrics

Examples for late-bound receiver methods

Public API

IDisposable file = new FileStream(...

file.Close () ;

31/37



Corpus

Usage Metrics

Examples for late-bound receiver methods

Public API

IDisposable file = new FileStream(...);
file.Close () ;

Internal API

// Object.GetType() returns an object
// of type RuntimeType, which is internal.
Type type = file.GetType();

31/37




Corpus
Usage Metrics

Examples for late-bound receiver methods

Project
class ProjectClass : ICloneable { ... }
ICloneable original = new ProjectClass();

object clone = c.Clone();

32/37



Corpus
Usage Metrics

Distribution of method calls in the corpus

100

80
60
40
20
Pro]ect Methods
- Late Bmd.\ng
- Framewo(k Methods
0
N N

) @ v“ .e ,ﬁ“ .s‘ &’°° ‘” e
éz‘ v coﬂ & &

33/37



Conclusion and Further Work

Conclusion and Further Work

34 /37



Conclusion

@ not much framework type specialization
» often limited to special types

35/37



Conclusion

@ not much framework type specialization
» often limited to special types

@ tendency towards interfaces over type specialization
> late-binding used with interfaces

35/37



Conclusion

@ not much framework type specialization
» often limited to special types
@ tendency towards interfaces over type specialization
> late-binding used with interfaces
@ corpus mostly does not meet usage expectations from framework
design

35/37



Conclusion

@ not much framework type specialization
» often limited to special types
@ tendency towards interfaces over type specialization
> late-binding used with interfaces
@ corpus mostly does not meet usage expectations from framework
design
@ many calls into APl code, but primarily “library-like" usage

35/37



Further Work

@ automated test suites for runtime analysis

36 /37



Further Work

@ automated test suites for runtime analysis

@ specialized analyses for smaller sets of APls

36 /37



Further Work

@ automated test suites for runtime analysis
@ specialized analyses for smaller sets of APls

@ measure other API usage forms

36 /37



Further Work

automated test suites for runtime analysis
specialized analyses for smaller sets of APls

measure other APl usage forms

comparison to Java APlIs

36 /37



Further Work

automated test suites for runtime analysis
specialized analyses for smaller sets of APls
measure other APl usage forms

comparison to Java APlIs

acceptance of new framework features

36

37



Thanks for your attention!

7 /37



	Introduction
	Methodology
	Results
	Conclusion and Further Work

