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Overview

Analysis of

@ the shape of existing APIs.

@ their usage by "projects in the wild.”
In terms of

@ reusability of APls.

@ OO-specific usage.

@ general acceptance and coverage.
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Motivation

provide understanding of existing API design
support research on API migration

facilitate development of new APls

show up refactoring options
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Contributions

@ combined static and dynamic analysis of APl design and usage
@ application of analysis to a corpus of selected open-source software

@ composition of metrics that are suitable to measure API related
software usage
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@ framework design analysis
. Framework Design Metrics API Usage Metrics
@ framework usage analysis
interpretation
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Methodology

API

APIs are defined by their namespace.
Namespaces are grouped for easier handling.

Example

The XML API is covered by the namespaces
@ System.Xml
@ System.Xml.Schema
@ System.Xml.Serialization

All these namespaces are grouped and represented as
@ System.Xml.*
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Methodology

APls

API| Usage

The term “APIl usage” refers to “usage by the developer”.

Example

class SomeClass { public SomeClass() { } }

Implicitly calls System.Object::.ctor() = not API usage.
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General statistics
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Specialization of types from the .NET APIs
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.NET types specialized by corpus
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Design Metrics

General statistics
@ namespaces: 74 (3 with only sealed types)
» 19 namespaces have types that were specialized (26.76%)
@ number of classes: 10457 (4295 sealed classes)
» 100 types are specialized (1.62%)
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Implemented interfaces
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.NET Framework

Design Metrics

General statistics
@ namespaces: 74 (3 with only sealed types)
» 19 namespaces have types that were specialized (26.76%)
@ number of classes: 10457 (4295 sealed classes)
» 100 types are specialized (1.62%)
@ interfaces: 957
» 70 interfaces are implemented (7.31%)



Corpus

Usage Metrics

Compiler generated interface implementations

A simple number generator in the form of an IEnumerable’ 1 can be
generated with the following code:

IEnumerable<int> GetSomeNumbers (int num)

{

Random r = new Random() ;
for (int i = 0; i < num; i++)
{

yield return r.Next();

23 /37



Corpus
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Implemented interfaces (without compiler generated)
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.NET Framework

Design Metrics

Abstractness of .NET namespaces

Namespace ConcreteTypes AbstractTypes Abstractness
Accessibility 1 6 0.86
System.Dynamic 4 16 0.80
System.AddIn.* 14 27 0.66
System.Collections 9 14 0.61
System.Runtime.InteropServices.x* 68 80 0.54
Microsoft.VisualC.x* 21 17 0.45
System.Collections.Generic 14 11 0.44
System.Collections.Concurrent 5 3 0.38
System.Security.AccessControl 33 17 0.34
System.Runtime.Remoting.* 108 54 0.33
System.Runtime.Caching.* 14 7 0.33
System.Runtime.ConstrainedExecution 2 1 0.33
System.Xaml.* 37 16 0.30
System.Text 17 7 0.29
System.ComponentModel. * 280 114 0.29
System.Runtime.Serialization.* 46 18 0.28
System.Security 19 7 0.27
Microsoft.JScript.* 140 51 0.27
System.Ling.* 39 14 0.26
System.IdentityModel.* 67 23 0.26
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Corpus
Usage Metrics

Comparison of API abstractness to number of specializations
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.NET Framework

Design Metrics

Unimplemented abstract types
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Corpus
Usage Metrics

Previously unimplemented abstract types
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Receiver Types
@ static receiver type

@ runtime receiver type
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Exception ex = new InvalidOperationException();
string s = ex.ToString();
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Corpus
Usage Metrics

Receiver Types
@ static receiver type

@ runtime receiver type

Example

Exception ex = new InvalidOperationException();
string s = ex.ToString();

static receiver type: Exception
runtime receiver type: InvalidOperationException
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Corpus
Usage Metrics

Late-bound methods

Static Data Additional Runtime Data

Namespace Methods Methods % Public API % Internal API % Project
System 493 506 24.90 18.38 56.72
System.Collections 130 488 22.75 32.17 45.08
System.Collections.Generic 105 327 10.70 18.65 70.64
System.Reflection.* 233 111 0.90 99.10 0.00
System.Data.* 123 97 77.32 0.00 22.68
System.Xml.* 354 82 45.12 54.88 0.00
System.I0.x* 203 51 45.10 17.65 37.25
System.ComponentModel. * 79 25 8.00 8.00 84.00
System.Ling.* 55 16 37.50 50.00 12.50
System.Runtime.Remoting.* 18 12 0.00 100.00 0.00
System.CodeDom. * 47 9 66.67 33.33 0.00
System.Text 44 9 77.78 22.22 0.00
System.Configuration.x* 31 8 25.00 12.50 62.50
System.Net.* 71 7 100.00 0.00 0.00
System.Windows.Forms.* 446 3 0.00 100.00 0.00
System.Web.* 382 3 66.67 33.33 0.00
System.Security.Principal 8 3 100.00 0.00 0.00
System.Windows. * 34 2 0.00 0.00 100.00
System.Runtime.Serialization.* 25 2 50.00 0.00 50.00
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Corpus
Usage Metrics

Examples for late-bound receiver methods

Public API

IDisposable file = new FileStream(...

file.Close () ;
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Corpus

Usage Metrics

Examples for late-bound receiver methods

Public API

IDisposable file = new FileStream(...);
file.Close () ;

Internal API

// Object.GetType() returns an object
// of type RuntimeType, which is internal.
Type type = file.GetType();
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Corpus
Usage Metrics

Examples for late-bound receiver methods

Project
class ProjectClass : ICloneable { ... }
ICloneable original = new ProjectClass();

object clone = c.Clone();
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Corpus
Usage Metrics

Distribution of method calls in the corpus
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Conclusion

@ not much framework type specialization
» often limited to special types
@ tendency towards interfaces over type specialization
> late-binding used with interfaces
@ corpus mostly does not meet usage expectations from framework
design
@ many calls into APl code, but primarily “library-like" usage
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Further Work

automated test suites for runtime analysis
specialized analyses for smaller sets of APls
measure other APl usage forms

comparison to Java APlIs

acceptance of new framework features
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Thanks for your attention!
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