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Abstract. Wikipedia represents rich ontological knowledge that is also
amenable to automated extraction. In particular, Wikipedia’s classifica-
tion graph may be used to provide a taxonomy within a field of interest.
However, Wikipedia’s classification graph has many issues making prun-
ing necessary. In this paper, we assemble a suite of bad smells to identify
and remove flawed classification relationships. The smells take into ac-
count Wikipedia’s peculiarities, as they are described in guidelines. We
organize the smells in a topology to optimize the pruning process. The
approach is evaluated for a taxonomy of computer languages—in this
field, Wikipedia arguably accounts for the most comprehensive knowl-
edge base that exists.
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1 Introduction

An ontology is a knowledge model, where information is either manually added
by domain experts or extracted from available sources, e.g., by using information
retrieval approaches. A taxonomy is a common form of an ontology; it focuses
on the classification of entities in a field of interest [14].

In this paper, we are concerned with the field of computer languages or soft-
ware languages; see [7] for a discussion of these synonyms. We aim at a taxonomy
of computer languages as an important building block of a more comprehensive
ontology of software languages, technologies, and concepts. Our effort is well in
line with Shilov et al.’s proposal [27] for a comprehensive knowledge portal for
computer language classification. We consider Wikipedia the most comprehen-
sive knowledge base for computer language classification—it is rooted by the
category ‘Computer languages’1.

Taxonomy extraction from Wikipedia is challenged by a number of factors.
Overall, an article’s quality depends on authors’ expertise and applied quality
assurance mechanisms [28]. Further, the use of categories as classifiers leads
to mixed expressions of equivalence, is-a and part-of relations [14]. In previous
work [19], we developed an interactive tool ‘WikiTax’ so that a user can manually

1 https://en.wikipedia.org/wiki/Category:Computer_languages
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Fig. 1. A fragment of the computer languages taxonomy.

exclude subcategories, subject to informal criteria. Ultimately, this approach
does not scale because of the number of issues and the difficulty to manage the
informal criteria.

In this paper, we describe a semi-automated approach to obtain the taxonomy
by extraction from Wikipedia and subsequent pruning. We aim here primarily
at the removal of wrong facts. Pruning is guided by bad smells which in turn
are ordered in a topology so that the pruning process is optimized. A bad smell
describes a situation where a quality issue is very likely, but not always apparent.
Thus, an expert’s opinion is still relevant. The concept was coined by Fowler [13]
for issues in software’s source code and found its way into ontology evaluation [3].
We assemble a suite of bad smells that focus on Wikipedia’s peculiarities. Bad
smells are mapped to pruning procedures that a domain expert can choose from.
Thus, our work is based on the following hypothesis: There exist many issues
in Wikipedia’s category graph, when aiming at a taxonomy, but the issues are
manageable in a systematic and scalable manner.

While the proposed pruning approach is evaluated in this paper for computer
classification only, we assume the overall approach to be valuable for any field of
interest—as long as an existing Wikipedia category can account as the root clas-
sifier for the field of interest. For instance, we identified the category ‘Computer
programming tools’2 as a foundation for programming technology classification.

Figure 1 plots a small fragment of the computer languages taxonomy. The
ovals contain classifiers and the arrows denote subclassifier relationships. There
are different kinds of classifiers that are important for a computer language
classification in our sense, such as paradigm-based classifiers like ‘Declarative
PL’ (where the string ‘programming languages’ was replaced by ‘PL’), a few
language families, and dialect-specific classifiers such as ‘ALGOL 60 dialect’.

Contributions of the paper

– We propose a suite of bad smells based on related work on software en-
gineering, ontology engineering, and semantic wikis while also introducing

2 https://en.wikipedia.org/wiki/Category:Computer_programming_tools
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smells that specifically take into account Wikipedia’s peculiarities, as they
are described in guidelines.

– We organize the smells in a topology to optimize the pruning process, as
inspired by work on code smells and refactoring [21]. Smells with a larger
pruning potential are considered first.

– We evaluate the approach with a comprehensive case study, in which we
derive a computer languages taxonomy from Wikipedia. The data and tools
of the case study as well as the actual taxonomy are available online3.

Road-map of the paper Section 2 discusses related work. Section 3 presents the
methodology. Section 4 presents the case study. Section 5 concludes the paper.

2 Related work

We discuss related work along dimensions of the field of interest in the case
study (i.e., computer language classification) and the more general problem of
taxonomy extraction and pruning.

Programming language classification The classification of programming lan-
guages (rather than computer languages more generally) has a long tradition
in research. In early work, Floyd [12] introduced the notion of paradigms as a
pattern-like way of thinking. Wikipedia’s category graph covers paradigms, e.g.,
through the category ‘Object-oriented programming languages’4. Each paradigm
supports a set of concepts that are necessary for the solution to a problem. Van
Roy et al. [29] offer a guide to choosing paradigms and a programming language
that supports them based on a problem description.

Computer language classification In our previous work [19], we collected refer-
ences to scholarly work on classifying computer languages—also languages other
than programming languages, e.g., model transformation or business process
modeling languages. Shilov et al. [27] address the broader problem of a com-
puter language ontology with additional properties of languages—other than
just classification along paradigms. They proposed the creation of the ontology
in a collaborative manner by also integrating different knowledge bases. Unfor-
tunately, this effort does not appear to be active at this point; no comprehensive
knowledge base has come out of it. We consider the taxonomy of this paper as
a key contribution to an emerging, comprehensive ontology.

Taxonomy extraction from Wikipedia Wikipedia is the target of data extrac-
tion in many ways, e.g., for the purpose of determining the semantics of article
links [22,24]. Wang et al. [30] provide an approach to extract an animal taxonomy
that is later used in an image search engine from Wikipedia. The approach is
dependent on the structure of animal articles. We did not observe any structure
of Wikipedia’s computer language articles that could be leveraged for pruning.

3 http://softlang.uni-koblenz.de/wikionto/
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Flati et al. [11] describe the retrieval of a bitaxonomy from Wikipedia’s cat-
egory graph and filter the entries using hypernym relations from the articles’
text. The filter would remove valid classifying categories as observed for ‘Java
(programming language)’. More generally, there is no related work that could
be used directly to remove wrong classification relationships within a field of
interest from Wikipedia’s category graph.

Ontology evaluation Evaluation of ontologies is an important part of an ontology
development and maintenance process [25]. Most ontology evaluation techniques
rely on the existence of another resource that contains exhaustive information.
For computer languages, we have been unable to identify any such resource.
Thus, we propose a criteria-based approach capable of revealing issues in a tax-
onomy without relying on other resources.

Ontology qualiy Ontology design patterns [1] describe best practices. Opposite to
best practices are bad practices. Poveda-Villalón et al. [23] speak of pitfalls; their
tool ‘OOPS!’ identifies pitfalls in OWL ontologies that include non-taxonomic
information. The pitfall ‘Including cycles in the hierarchy’ aims at identifying
cycles in a subtyping hierarchy; we also consider this pitfall in our approach.

In software engineering, bad practices in source code are captured as bad
smells [13]. Further work in the context of software refactoring suggests to im-
prove efficiency by analyzing multiple smells ordered in a derived topology [21].
Bad smells are also used in knowledge engineering. Baumeister et al. provides
a series of work on bad smells denoted as ‘anomalies’ in diagnostic knowledge
bases [2], in OWL based ontologies [3] and in verification of ontologies with
respect to existing rules [4,5]. The proposed bad smell suites were further ex-
tended by Fahad and Qadir [6]. Roussey et al. [26] speak of antipatterns instead
of bad smells or anomalies. We adopted and complemented existing bad smells
to Wikipedia’s peculiarities, as described in Section 3.

Ontology pruning Pruning may be based on merging two resources such as Word-
Net and any online encyclopedia [15] or alignment of a systematically pruned
ontology to an expert derived ontology [20]. Our approach is specifically de-
signed to cope with the challenge that there is no obvious second rich resource
in the field of interest. Pruning may also be based on ‘relevance’ such that a too
large ontology is narrowed down to the aspects of interest [16]. In contrast, our
approach is specifically designed to remove wrong facts.

Taxonomy debugging In [18] Lambrix et al. suggest to repair missing is-a struc-
tures with algorithms based on existing knowledge in other external resources.
Elsewhere, Lambrix and collaborators [14,17] present an approach to debug and
align taxonomies that focuses on repairing missing and wrong classifications with
respect to an ontology network. The candidates for missing is-a relations and
mappings are validated by a domain expert. Further the idea of recommending
repair actions and assigning each recommended repair action a priority is pre-
sented. In constrast, our work is focused on pruning and primarily smell-driven.



3 Methodology

We present an approach for pruning a taxonomy based on bad smells. Figure 2
presents the involved activities in a control-flow diagram with an initial and final
node representing start and end. The first four overlapping activities influence
each other and focus on exploring the category graph in Wikipedia. At first, a
root category is selected from Wikipedia, such as ‘Computer languages’. Next,
the user has to carefully state inclusion and exclusion criteria for categories that
he finds in the process. Further, the user defines a maximum depth dmax, since
we noticed that at least for computer languages the subcategories start to not
be feasible subclassifiers anymore after a certain level of depth. At last, the user
has to try to carefully detect problematic categories for the automatic extraction
and should be excluded (Cex). Exploration can be performed directly on top of
Wikipedia or by using the interactive ‘WikiTax’ tool [19].

We further discuss the exploration steps in Section 3.1. Afterwards, the au-
tomatized extraction of the initial taxonomy takes place that is later pruned
based on a bad smell topology.

Fig. 2. Methodology towards a cleaned taxonomy.

3.1 Extraction from Wikipedia

Wikipedia’s category graph offers a rich taxonomy that can be used to create
a taxonomy. When and how to assign an article or a category to a category in
Wikipedia is described in its guidelines5. Authors express these assignments in
the Wiki markup of the concerned page6. In the resulting taxonomy Wikipedia’s
categories can be mapped to possible classifiers and the articles represent the
classified instances. Thus, a subcategory relationship corresponds to hasSubclas-
sifier relationship and article containment is viewed as a classifies relationship.

If one aims at extracting taxonomic information from Wikipedia, its pecu-
liarities have to be taken into account. In an ontology, each entity represents

5 http://en.wikipedia.org/wiki/Wikipedia:Categorization
6 http://en.wikipedia.org/wiki/Help:Wiki_markup
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exactly one object of the real world. This rule is not applied to Wikipedia. An
article should cover more than one object, if the text flow and understandability
is improved this way.7 A category might have been assigned based on a smaller
section inside the article, but the represented instance should not be classified
by such a category that does not relate to the whole.

Wikipedia’s guidelines describe a special category kind called ‘Eponymous
Category’8. These categories are proxies for entities; articles that are strongly
related to the corresponding entity can be placed in the eponymous category.
Since such a category does not correspond to a classifier in a proper way, our
analysis pays attention to them.

After the extraction, the taxonomy contains additional information to enable
the exploitation of certain patterns. For every extracted category and article we
suggest to temporarily extract all direct supercategories as additional superclas-
sifiers even if they are not reachable from the root. This allows further arguments
on the semantic relevance at a later point.

3.2 Bad Smell Suite

This section presents our assembled bad smells. They were chosen such that
they aim at finding semantic flaws and irrelevant elements that can be pruned.
We avoid to formulate bad smells that only focus on structuring or design issues
that would lead to necessary refactorings. For each bad smell, we tell its purpose,
inspiring related work, a formal specification, and an example.

Bad smell Eponymous Classifier : The smell takes care of eponymous cate-
gories such as ‘Java (programming language)’, as discussed in Section 3.1. We
search for classifiers, for which exists an instance with the same name. Our for-
mulation ignores the existence of classifiers whose name is the plural form of an
existing instance’s name or a variation for now. (Notation: name(e) returns the
name of a given element e. T is the set of all classifiers in the taxonomy and I
corresponds to the set of all instances in the taxonomy.) .

EponymousClassifier = {t ∈ T | ∃i ∈ I.name(i) = name(t)}

Bad smells Semantically Distant Classifier and Instance: Wikipedia’s guidelines
state that the annotation of categories should not be overused9. In our explo-
ration, we found many classifiers and instances that were in our opinion neither
subclassifiers nor instances of computer languages. We observed that nearly all
of them have more unrelated (super-)classifiers than related ones. Inspired by
semantic flaws formulated by Fahad and Qadir [6], we define smells targeting
classifiers and instances with a measured semantic distance. The most com-
plex cases are classifiers such as ‘Computer algebra systems’ that still contain
relevant instances that need to be rescued before the classifier is pruned. (Nota-
tion: hasSubclassifier returns the set of direct subclassifiers for a given classifier;
classifies returns the set of classified instances for a given classifier; reachable

7
http://en.wikipedia.org/wiki/Wikipedia:Notability#Whether_to_create_standalone_pages

8
http://en.wikipedia.org/wiki/Wikipedia:Categorization#Eponymous_categories

9
http://en.wikipedia.org/wiki/Wikipedia:Categorization
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states for a given element, whether it is an instance or subclassifier of the root
in the taxonomy. Tr is the set of reachable classifiers for a given subclassifier or
instance and Tu is the set of unreachable ones.)

SemDistClassifier = {t ∈ T | reachable(t) ∧ ∀tr ∈ Tr : t ∈ hasSubclassifier(tr)

∧ reachable(tr) ∧ ∀tu ∈ Tu : t ∈ hasSubclassifier(tu) ∧ ¬reachable(tu)

∧ (|Tr| < |Tu|}

SemDistInstance = {i ∈ I | ∀tr ∈ Tr : i ∈ classifies(tr) ∧ reachable(tr)

∧ ∀tu ∈ Tu : i ∈ classifies(tu) ∧ ¬reachable(tu) ∧ (|Tr| < |Tu|}

Bad smells Double Reachable Classifier and Instance: These smells aim at finding
semantically flawed relationships. Such a flaw may be suspected, if a classifier or
an instance is reachable from two distinct direct subclassifiers of the root. They
are inspired by Baumeister et al’s [3] description on ‘Partition Errors’. In the
case study, with ‘Computer languages’ (CL) as the root, we observed exceptions
for elements that are reachable through both ‘Data modeling languages’ and
‘Markup languages’, e.g.,‘XML’. (Notation: hasSubclassifier∗ returns the set of
subclassifier that are reachable from a given classifier including itself; classifies∗

works analogously for instances.)

DoubleReachableClassifier = {t ∈ T | ∃top1, top2 ∈ hasSubclassifier(CL) :

top1 6= top2 ∧ t ∈ hasSubclassifier∗(top1) ∩ hasSubclassifier∗(top2)

∧ (¬top1 = ‘Data modeling languages′ ∨ ¬top2 = ‘Markup languages′)}
DoubleReachableInstance = {e ∈ E | ∃top1, top2 ∈ hasSubclassifier(CL) :

top1 6= top2 ∧ t ∈ classifies∗(top1) ∩ classifies∗(top2)

∧ (¬top1 = ‘Data modeling languages′ ∨ ¬top2 = ‘Markup languages′)}

Bad smell Cyclic Classifier : In ontologies, a cycle is a recognized flaw [3,23]. In
the case of the extracted taxonomy from Wikipedia, cycles can only appear in
subclassification relationships. Thus, all classifiers have to be analyzed if they
are subclassifier of themselves. A cycle appears in subcategories of Wikipedia’s
computer languages category as ‘Data-centric programming languages’ and ‘Per-
sistent programming languages’ are subcategories of each other.

CyclicClassifier = {t ∈ T | (t ∈ hasSubclassifier∗(t)}

Bad smell Lazy Classifier : The smell is inspired by Fowler’s Lazy Class [13]
and Baumeister’s smell ‘Lazy Knowledge Objects’ [2]. We propose this smell as
means of questioning the relevance of a classifier with less than n subclassifiers
and instances in total. In our evaluation we assign seven to n based on our
exploration experience.

LazyClassifier = {t ∈ T | (|classifies(t)| + |hasSubclassifier(t)|) < n}



Fig. 3. Mapping smells on the left to relevant pruning/refactoring.

Bad smells Redundant Classifies and has-Subclassifier (relationship): Redun-
dancy is a recognized flaw in ontologies [3]. We say that an instance relation-
ship is redundant, if there is another instance relationship for the same element
and subclassifier. Redundancy can be defined analogously for subclassifier rela-
tionships. (Notation: hasSubclassifier+ returns the set of subclassifiers that are
reachable from a given classifier excluding itself.)

RedundantClassifies = {(t, e) | t ∈ T ∧ e ∈ E ∧ e ∈ classifies(t)

∧ ∃ts ∈ hasSubclassifier+(t) : e ∈ classifies(ts)}

RedundanthasSubclassifier = {(t1, t2) | t1 ∈ T ∧ t2 ∈ hasSubclassifier+(t)

∧ ∃t3 ∈ hasSubclassifier+(t1) : t2 ∈ hasSubclassifier(t3)}

3.3 Transformations

The procedures leverage primitive automated prunings, but some rely on de-
cisions to be made by the domain expert. Figure 3 gives an overview of our
adapted pruning suite. We explain the suite with examples from the case study.
For each pruning we describe the transformations that have to be executed. The
columns are sorted by decreasing ‘priority’. The leftmost applicable procedure
should be preferred.
Transformations Remove Subclassifier and Classifies (relationship): We start
with the most basic prunings that focus on removing a single relationship in
a taxonomy. A flawed hasSubclassifier relationship can be detected by search-
ing matches for Double Reachable Classifier and Redundant Subclassifier or in
the course of fixing a match for Double Reachable Instance. For example, the
classifier ’Page description markup languages’ is a subclassifier of ’Markup lan-
guages’ and ’Programming languages’. The responsible flawed hasSubclassifier
relationship to be removed is the one between ’Page description languages’ and
’Domain-specific programming languages’. A flawed classifies relationship can



be detected by scanning the taxonomy for Double Reachable Instance and Re-
dundant Classifies. For example, ’XProc’ (a XML transformation language for
XML Pipelines) is falsely classified as a programming language through clas-
sifiers, such as ’Declarative programming languages’. Thus, multiple instance
relationships have to be removed until the issue is resolved.
Transformation Lift Cycle: A cycle in the subtyping hierarchy can be resolved by
searching and removing a flawed relationship in the cycle. E.g., ’Persistent pro-
gramming languages’ (These are programming languages, where objects can be
persisted directly without using technology for other technological spaces.) and
’Data-centric programming languages’ are subclassifiers of each other. We ob-
served that persistent programming languages are data-centric, but not all data-
centric programming languages are persistent programming languages, thereby
suggesting a relationship to be removed.

Listing 1.1. A procedure to lift a cycle.

l i f t C y c l e ( t : : C l a s s i f i e r ) {
whi le ( t in C y c l i c C l a s s i f i e r )

( t2 , sub ) = ident i f yF lawedRe la t i on (
C y c l i c C l a s s i f i e r )

removeSubclass ( t2 , sub )
}

Transformation Abandon Classifier : This transformation models the complete
removal of a classifier from the taxonomy, as identified by the smells Distant
Classifier, Eponymous Classifier, Semantically Distant Classifier, Lazy Classifier,
and Double Reachable Classifier. Irrelevant classifiers may be found by inpsecting
the classifiers of a Semantically Distant Instance as well.

A classifier can just be removed, if it has no relevant instances or subclassi-
fiers, such as ’Software that uses Qt’. More effort is required, if relevant subclas-
sifier and instances can be identified. ’Ada (programming language)’ is an epony-
mous classifier with various persons as instances and the irrelevant subclassifier
’Free software programmed in Ada’, but the subclassifier ’Ada programming
language family’ should be maintained. One has to decide which subclassifiers
and instances are relevant. If all are relevant, this procedure corresponds to col-
lapsing the hierarchy known from software refactorings [13]. For example, the
classifier ‘SETL programming language family’ only has ‘SETL’ as its instance.
We question the value of the language family and collapse the classifier.

Listing 1.2. A procedure to abandon a classifier.

abandonClass ( t : : C l a s s i f i e r ) {
SupT = { t s in T | t in h a s S u b c l a s s i f i e r ( t s ) }
I = { i in E | i in c l a s s i f i e s ( t ) }
SubT = { t s in T | t s in h a s S u b c l a s s i f i e r ( t ) }
f o r each t s in SupT

removeSubClass ( ts , t )
f o r each t s in SubT

i f r e l e v a n t ( t s )
addSubClass (SupT , t s )



e l s e
abandonClass ( t s )

f o r each i in I
i f r e l e v a n t ( i )

addInstance (SupT , i )
e l s e

abandonInstance ( i )
}

Transformation Abandon Instance: The pruning removes an instance, as it possi-
bly matches bad smells such as Semantically Distant Instance and Double Reach-
able Instance:

Listing 1.3. A procedure to abandon an instance.

abandonInstance ( e : : In s tance ) {
T = { t in T | e in c l a s s i f i e s ( t ) }
f o r each t in T

removeInstance ( t , e )
}

3.4 Topology of Bad Smells

In initial experiments, we analyzed a retrieved taxonomy with each bad smell
separately and encountered a lot of side effects. When we resolved one bad smell
match, the involved entities did not appear in other bad smells anymore as
well. Therefore, we decided to derive a topology inspired by previous work on
source-code refactoring [21], which prescribes the order in bad smells are to be
considered by the domain expert.

We describe the effect for each bad smell, when it is addressed before another
smell—with respect to the assigned prunings and refactorings. A table for all
such effects is displayed at Figure 4; a full documentation can be found in the
repository and on the paper’s website, as linked earlier.

We found two kinds of side effects between bad smells (bs1, bs2) with decreas-
ing priority. ‘Complete resolution’ has the highest priority, where if a match of
bs1 is resolved, involved instances or classifiers do not appear in a match of bs2.
The second effect ‘Ease Detection’ occurs if resolving a match of bs1 introduces
results for bs2 or strengthens an existing result.

From the effects described in Figure 4 we derive a topology as follows. The
higher prioritized found effect determines the order. For example, if fixing a
match for bs1 may completely resolve a match for bs2, bs1 should be analyzed
first, even if a lower prioritized effect takes place if bs2 was processed before bs1. If
two bad smells have the same effect in both ways, we make a subjective decision
based on mapped transformations and experience. The result is presented in
Figure 5.

After processing ‘Semantically Distant Instance’ no additional information
on further unreachable superclassifiers are needed and we suggest to clean up
the taxonomy by removing all elements that are neither (transitive) subclassifiers



Fig. 4. Effects of analyzing one smell before another. Black represents ‘Complete res-
olution, gray ‘Ease Detection’

Fig. 5. The smell topology structures the smell-based analysis, where black arrows
state that an order was derived from a ‘Complete resolution’ effect and a white arrow
represents an order derived from an ‘Ease detection’ effect.

nor (transitive) instances of the root. Additional superclassifiers that were used
to determine semantic distance and unreachable subgraphs are removed.

4 Case Study

We summarize our findings while applying the approach to the computer lan-
guages category. The data and tools of the case study as well as the actual
taxonomy are available online10. By manually exploring the Wikipedia graph
we observed a correlation between the frequency of irrelevant elements and the
depth level. We chose a maximum depth of dmax = 5; deeper elements are irrele-
vant. An example for a category with a higher depth value is ‘Silent Storm engine
games’ that contains articles on video games using the silent storm engine.

According to the suggested methodology of Figure 2, we present inclusion
and exclusion criteria next. We first start by listing general exclusion criteria
from [19] and then proceed with new and more specific ones.

10 http://softlang.uni-koblenz.de/wikionto/
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Alternative Classifier: We exclude categories that do not classify computer
languages by any kind of software concept, purpose or language family. Thus, we
are neither interested in classifying a computer language based on its influence as
presented in ‘Academic programming languages’ nor those classifying by creation
year as in ‘Programming languages by creation date’.

Deviating Classifier: We exclude categories that do not represent a computer
languages classifier at all. For example, any eponymous category serves as a
container of related topics and is not relevant for classification. Additionally,
categories classifying software that can be identified as subcategories such as
‘Software by programming language’ are excluded this way as well.

List Classifier: We exclude categories that serve as collections of articles cov-
ering lists of entities such as ‘Lists of programming languages’.

Maintenance Pages: We exclude any category and article that only serves the
overview and maintenance of Wikipedia pages, e.g., ‘Wikipedia categories named
after programming languages’ and ‘Uncategorized programming languages’.

The inclusion criteria can be summarized as follows. Any category is included
that provides a classification based on a software concept or purpose of a com-
puter language. A purpose of a language is for example expressed by ‘Hardware
description languages’ that contains only languages meant to be used for describ-
ing a hardware’s properties. Since we are interested in the similarity of computer
languages, we include the categories that represent language families such as ‘C
programming language family’.

At the next step, during taxonomy extraction, we noticed subcategories lead-
ing far into other domains or adding too much necessary time and effort. Thus,
we decided to exclude a few category names from the start that would just
add excluded kinds of classifiers and many excluded kinds of subclassifiers and
instances such as ‘Data types’ and ‘Programming language topics’.

Figure 6 displays the frequencies for applied prunings from experiments con-
ducted in December 2015. It shows actual differences in the number of matches
when a topology was used (‘Proc Matches’) and when it is not used (‘Initial
Matches’). The column ‘Rem. Matches’ presents the number of matches for each
bad smell that can be found after we applied our pruning approach. All num-
bers can vary depending on the executor’s expertise. Even though we offered an
ordered mapping in Figure 3, subjectivity and improvement with a learning pro-
cess is unavoidable, but it becomes significantly less as soon as well elaborated
inclusion and exclusion criteria are set up before starting.

Various decision issues may still arise in the process such as a system that
might implement an own language. For example, ‘Troff’11 is a component of
a document processing system. Thus, it is a subsystem and not a language,
but it implements a command language which is described in the corresponding
article. The same applies to many computer algebra systems12. Though, some
languages, such as ‘MatLab’ can be found. The application of Abandon Type
with a selective rescue is the most feasible.

11 https://en.wikipedia.org/wiki/Troff
12 https://en.wikipedia.org/wiki/Category:Computer_algebra_systems
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Fig. 6. Frequencies of chosen transformation series are displayed for each smell. ‘Total
Transf.’ sums up the frequencies for each smell. ‘Initial Matches’ shows the number of
matches before the cleaning procedure, ‘Proc Matches’ displays the number of matches
during the cleaning procedure and ‘Rem Matches’ presents the number of remaining
ones per smell.

For each bad smell match, the user has to look for information at the corre-
sponding Wikipedia pages. Some articles on language candidates in Wikipedia
do not provide enough ground for a decision on how to classify them. For ex-
ample, the articles ‘WordBASIC’ and ‘Parser (CGI language)’ only provide a
minimal description. As a result, other sources have to be inspected as well,
whose information quality may be questionable.

The classification is restricted to a tree-like taxonomy. As a result, the di-
mension problem is apparent at types such as ‘Dependently typed languages’ as
matches for Double Reachable Classifiers, where such structure might not fit or
is used in the wrong way. E.g., ‘Dependently typed languages’ is a subtype of
‘Specification languages’ and ‘Programming languages’ at the same time, but it
has instances that should not be transitive instances of both supertypes.

5 Concluding remarks

We have described work towards a comprehensive ontology of software languages,
technologies, and concepts. In this paper, we have focused on the milestone of a
taxonomy for languages. Such ontological knowledge is needed, for example, for
‘semantic’ documentation of software technologies and systems [8,10,9].

The key challenge in deriving a computer languages taxonomy was to iden-
tify and leverage a suitable source. There exists no gold standard, no established
relatively comprehensive taxonomy. We determined that Wikipedia—in com-
parison to DBpedia and Wikidata—is the most suitable starting point. DBpedia
integrates additional types, e.g., from Yago, which may complicate pruning. (For
instance, the entry on the Java programming language13 contains an additional,

13 http://dbpedia.org/snorql/?describe=http%3A//dbpedia.org/resource/Java_

%28programming_language%29
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irrelevant type ‘communication’. Wikidata does not contain enough information.
(For instance, the entry on Java14 only lists the classifier ‘object orientation’.)

Our approach for pruning Wikipedia’s classification graph is semi-automated.
The search for bad smells is automated, but an expert still has to confirm the
issues and make decisions about the exclusion of less or more classification re-
lationships based on different pruning options. In this manner, some degree of
subjectivity cannot be avoided. The actual pruning steps are again automated
by simple transformations on the evolving category graph.

In future work, we plan to research a multi-dimensional approach, subject
to the integration of heterogeneous knowledge resources of language proper-
ties [27]. In this manner, we may also incorporate data from Wikipedia articles’
sections [24] and integrate data from smaller, existing taxonomies such as those
identified in [19]. In terms of evaluation, we hope to involve the ‘Software Lan-
guage Engineering’ community.
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19. Lämmel, R., Mosen, D., Varanovich, A.: Method and Tool Support for Classifying
Software Languages with Wikipedia. In: Proc. SLE 2013. LNCS, vol. 8225, pp.
249–259. Springer (2013)

20. Lee, W., Bridewell, W., Das, A.K.: Comparison of Semantic Similarity Measures
for Application Specific Ontology Pruning. In: HISB 2011. pp. 97–103. IEEE (2011)

21. Liu, H., Yang, L., Niu, Z., Ma, Z., Shao, W.: Facilitating software refactoring with
appropriate resolution order of bad smells. In: Proc. ESEC / SIGSOFT FSE 2009.
pp. 265–268. ACM (2009)

22. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic Knowl-
edge Patterns from Wikipedia Links. In: Proc. ISWC 2011. LNCS, vol. 7031, pp.
520–536. Springer (2011)
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