
Yet another annotated SLEBOK bibliography

Ralf Lämmel

Version 0.003 (2 November 2014)

Abstract

Software Language Engineering (SLE) is a particular view on Soft-
ware Engineering (SE), which pays specific attention to the many
software languages that are used in software development. These are
not just programming languages, but also modeling languages, query
and transformation languages, schema languages—many of them to
be considered domain-specific languages. SLE is concerned with de-
sign, implementation, testing, deployment, and evolution of software
languages as well as language-based software components.

The purpose of this annotated bibliography is to contribute to the
SLE body of knowledge (SLEBOK). The bibliography collects a man-
ageable set of papers that cover many principles and practilities of SLE
in an accessible manner. The intension is to favor more fundamental,
general papers over specific, highly technical papers. The selection
is otherwise not very systematic. The SLE and GTTSE venues were
assumed to provide key papers. Yet other venues, such as OOPSLA
(SPLASH), ECOOP, and CC as well as special issues on the SLE
topic or its vicinity were also considered. Several papers were simply
included based on the author’s long-term exposition to SLE school of
thought. Moreover, several SLE researchers have provided advice on
what additional papers to include.

The bibliography could be useful in teaching. In fact, the selection
of papers is largely based on what I have covered or wish or could
imagine to cover in a relatively advanced SLE course.

1

Contents

1 Disclaimer 3

2 Acknowledgment 3

3 Metamodel of the bibliography 4

4 Papers of the bibliography 5
4.1 Koskimies91 . 6
4.2 Hughes95 . 8
4.3 Reynolds98 . 10
4.4 SirerB99 . 12
4.5 Sheard01 . 14
4.6 KurtevBA02 . 16
4.7 Thomas03 . 18
4.8 Hainaut06 . 20
4.9 HappelS06 . 22
4.10 Bezivin06 . 24
4.11 BezivinBFGJKKP06 . 26
4.12 BravenboerTV06 . 28
4.13 AlvesV09 . 30
4.14 Wachsmuth09 . 32
4.15 Moody09 . 34
4.16 RenggliGN10 . 36
4.17 HeidenreichJSWB09 . 38
4.18 Cordy11 . 40
4.19 ErwigW12a . 42
4.20 CookL11 . 44
4.21 HerrmannsdoerferVW11 . 46
4.22 MullerFBC12 . 48
4.23 JezequelCDGR12 . 50
4.24 VolterSBK14 . 52

2

1 Disclaimer

This is unfinished work.

2 Acknowledgment

The following people have made suggestions for inclusion into the bibliog-
raphy or given more general advice on the project: Anya Helene Bagge,
David Lorenz, Richard Paige, Andrei Varanovich, Guido Wachsmuth, An-
dreas Winter, Vadim Zaytsev.

3

3 Metamodel of the bibliography

The document is generated from a model. The metamodel is given here
informally in terms of how the document looks like. There is one page per
entry with data as follows:

Key Descriptor of the paper.

Title Title of the paper.

Citation Bibtex citation for the paper.

Online URL Public access where possible.

Required concepts Assumed background.

Provided concepts Knowledge areas served.

Annotation Description of the paper.

Figure An illustration.

The illustration consists of an annotated figure, which is taken either
directly from the paper or assembled. Annotations of papers and their illus-
trations may also refer to works which are not part of the selection.

4

4 Papers of the bibliography

5

4.1 Koskimies91

Koskimies91 – Data

Citation
[17]

Title
Object-Orientation in Attribute Grammars

Online URL
http://link.springer.com/chapter/10.1007%2F3-540-54572-7_11

Required concepts
context-free grammar, attribute grammar, object orientation

Provided concepts
object-oriented context-free grammar, object-oriented context-free gram-
mar

Annotation
The attribute grammar formalism is married with the object-oriented
paradigm. Arguably, a side effect of this marriage is that the underlying
context-free grammar formalism is also married with object orientation,
which is interesting in so far that this (early) explanation of the cor-
respondence is exploited nowadays in diverse mapping tools and code
generators.

6

http://link.springer.com/chapter/10.1007%2F3-540-54572-7_11

Koskimies91 – Illustration

304

Here card(Z) denotes the cardinality of set Z. These conditions are overlapping: a
nonterminal having only a single chain production may be viewed as a "structural" production
according to 1), or as a "superclass" production according to 2). Since this ambiguity does not
affect the actual form of the CFG but only its interpretation, we ignore it here and merely
assume that there is some additional resolving information (as in the actual systems). Note that
nonterminals falling into category 1) are basic nonterminals, and nonterminals falling into
category 2) are superclass nonterminals.

MI stands for multiple inheritance: a class system defined above allows situations in which a
class has more than one superclasses. However, multiple inheritance may be undesirable for
various reasons. The following definition excludes multiple inheritance (SI stands for single
inheritance):

Definition 3. An MI-structured CFG is SI-structured, if ((A->B) ~ P and (C->B) ~ P)
implies A=C.

If only syntactically meaningful nonterminals are allowed, we must have the additional
requirement that the grammar is reduced:

Definition 4. An MI-structured CFG is strongly MI-structured if it is reduced.

Definition 5. An SI-structured CFG is strongly Sl-structured if it is reduced.

Finally, we associate object-oriented CFGs with classes by defining the class system
associated with an MI-structured CFG (and hence with an SI-structured CFG, too).

Definition 6. The class system of an MI-structured CFG is (N,~) where A~B iff (A->
B)~ P.

In the sequel we shall consider mainly SI-structured CFGs. Using the class system of an SI-
structured CFG, we can determine the objects that correspond to a given input string as
follows. Consider the syntax tree of the input string (note that unambiguity is not required for
MI- or SI-structured grammars; however, we assume that in case of ambiguity there is some
way of choosing the "right" syntax tree). Each instance of a basic nonterminat in the tree
corresponds to the lowest class layer of an object. The upper class layers of the objects are
determined directly by the ancestor classes of the basic nonterminal (class). This object will be a
component object for the object that corresponds to the nearest instance of a basic nonterminal
encountered above in the tree.

Example 2. SI-structured expressions

Conventionally, expression structures are specified syntactically using context-free grammars
of the form:

Expression -> Expression AddOp T~rm I Term
Term -> Term MulOp Factor I Factor
Factor -> number I'(' Expression ')'
AddOp -> '+' I '-'
MulOp -> '*'17'

305

Here "number" denotes an integer constant. This grammar is not MI-structured, nor SI-
structured. A (strongly) SI-structured grammar is obtained by a simple transformation:

Expression -> Sum I Tenn
Sum -> Expression AddOp Term
Term -> Multiplication I Factor
Multiplication -> Term MulOp Factor
Factor -> Constant I SubExpr
Constant -> number
SubExpr -> '(' Expression ')'
AddOp -> Plus I Minus
MulOp -> Times I Div
Plus -> '+'
Minus -> '-'
Times -> '*'
Div -> '/'

As can be seen from this example, transforming a grammar into an SI-structured one tends to
increase the size of the grammar considerably. On the other hand, the need to find names for the
alternative fight-hand sides also increases the informative contents of the description. The
resulting objects are illustrated in Fig. 2.

=

2 3

Fig,2. The objects and their class layers for input string 1+2"3. The component
objects are shown by arcs pointing at the static type of the object. The part
corresponding to the syntax tree is shaded. Note that two neighboring layers in the
shaded part correspond to a chain production in the syntactic sense.

(End of Example 2)

There is a straightforward algorithm for transforming an arbitrary context-free grammar into
an SI-stmctured one, without changing the generated language. The resulting grammar may of
course grow; it can be shown that the growth rate is quadratic in the worst case [KoM91].

From conventional to
(strongly) SI-structured
context-free grammar

The figure shows two grammars for the same expression language taken from
the paper. The first grammar is a conventional context-free grammar in terms
of style, whereas the second grammar is restructured to be in an explicitly
OO-enabled form. That is, an object model with single inheritance could be
derived from the second grammar directly.

7

4.2 Hughes95

Hughes95 – Data

Citation
[15]

Title
The Design of a Pretty-printing Library

Online URL
http://link.springer.com/chapter/10.1007%2F3-540-59451-5_3

Required concepts
functional programming

Provided concepts
pretty printing, combinator library

Annotation
Pretty printing is clearly an important form of language processing.
This is not the first paper on a declarative and compositional approach
to pretty printing; it stands out though with a very accessible presen-
tation explaining the design and implementation of a (Haskell-based)
combinator library for pretty printing. This library can be viewed as
providing a simple embedded language for pretty printing.

8

http://link.springer.com/chapter/10.1007%2F3-540-59451-5_3

Hughes95 – Illustration

Pretty term

Pretty printing function

‘Ugly’ term

The figure shows snippets (two Haskell terms and one Haskell function) taken
from the paper. The figure illustrates pretty printing for binary trees with
a string as info at each fork (i.e., non-leaf) node. The pretty-printed term
uses line breaks and indentation for prettiness. The pretty printing function
maps trees to documents; see the reference to the Doc type. Pretty printer
combinators are used; see ‘sep’ for example.

9

4.3 Reynolds98

Reynolds98 – Data

Citation
[28]

Title
Definitional Interpreters for Higher-Order Programming Languages

Online URL
http://cs.au.dk/~hosc/local/HOSC-11-4-pp363-397.pdf

Note
This paper originally appeared as [27].

Required concepts
semantics

Provided concepts
interpreter, continuation

Annotation
The paper discusses the use of interpreters as definitions of languages.
There are the notions of defining and defined language (similar to what
is also called elsewhere meta and object language). The paper analyzes
possible differences between the interpreter-based definition and the
formal or informal definition. The paper also discusses different styles
of interpreter definition, e.g., a less insightful meta-circular interpreter
for a higher-order language versus a first-order interpreter for the same
defined language. The issue of application-order dependence is analysed
and addressed with continuations.

10

http://cs.au.dk/~hosc/local/HOSC-11-4-pp363-397.pdf

Reynolds98 – Illustration

374 REYNOLDS

5. A Meta-Circular Interpreter

Our first interpreter is a straightforward transcription of the informal language definition
we have already given. Its central component is a function eval that produces the value of
an expression r in a environment e:

eval = λ(r, e). I.1(
const?(r) → evcon(r), I.2
var?(r) → e(r), I.3
appl?(r) →

(
eval(opr(r), e)

)(
eval(opnd(r), e)

)
, I.4

lambda?(r) → evlambda(r, e), I.5
cond?(r) → if eval(prem(r), e) I.6

then eval(conc(r), e) else eval(altr(r), e), I.7
letrec?(r) → letrec e′ = I.8

λx. if x = dvar(r) then evlambda(dexp(r), e′) else e(x) I.9
in eval(body(r), e′)

)
I.10

evlambda = λ(", e). λa. eval
(
body("), ext(fp("), a, e)

)
I.11

ext = λ(z, a, e). λx. if x = z then a else e(x). I.12

The subsidiary function evlambda produces the value of a lambda expression " in an
environment e. (We have extracted it as a separate function since it is called from two
places, in lines I.5 and I.9.) The subsidiary function ext produces the extension of an
environment e that binds the variable z to the value a. It should be noted that, in the
evaluation of a recursive let expression (lines I.8 to I.10), the circularity in the definition of
the extended environment e′ is handled by making e′ a recursive function. (However, it is
a rather unusual recursive function which, instead of calling itself, calls another function
evlambda, to which it provides itself as an argument.)
The function eval does not define the meaning of the predefined variables. For this

purpose, we introduce the “main” function interpret, which causes a complete program r
to be evaluated in an initial environment initenv that maps each predefined variable into the
corresponding basic function:

interpret = λr. eval(r, initenv) I.13
initenv = λx.

(
x = “succ” → λa. succ(a), . . . I.14

x = “equal” → λa. λb. equal(a, b)
)

. . .
. I.15

In the last line we have used a trick called Currying (after the logician H. Curry) to
solve the problem of introducing a binary operation into a language where all functions
must accept a single argument. (The referee comments that although “Currying” is tastier,
“Schönfinkeling” might be more accurate.) In the defined language, equal is a function
which accepts a single argument a and returns another function, which in turn accepts a
single argument b and returns true or false depending upon whether a = b. Thus in the
defined language, one would write (equal(a))(b) instead of equal(a, b).

The figure, taken from the paper, shows a meta-circular interpreter for (in)
a simple functional language with lambdas, constants, conditionals, and re-
cursive let.

11

4.4 SirerB99

SirerB99 – Data

Citation
[30]

Title
Using production grammars in software testing

Online URL
http://www.cs.cornell.edu/people/egs/papers/kimera-dsl99.pdf

Required concepts
software engineering

Provided concepts
grammar-based testing

Annotation
The paper shows how grammar-based test-data generation and an ac-
companying methodology of testing may be highly effective and scal-
able for testing language-based software, in fact, the Java Virtual Ma-
chine. Previous publications on grammar-based testing mainly focused
on compiler testing. The paper relies on a domain-specific language
lava for specifying grammars from which to generate test data – byte-
code, in this case. The generated test data is used for stress tesing the
JVM verifier and also for comparative tesing of different verifiers.

12

http://www.cs.cornell.edu/people/egs/papers/kimera-dsl99.pdf

SirerB99 – IllustrationSecond Conference on Domain Specific Languages
Austin, Texas, October 3–5, 1999.

4

semantics in an interpreter, compiler and optimizer,
are correct. We faced this challenge when we devel-
oped our own Java virtual machine [Sirer et al. 98].
Our attempts to create test cases manually were soon
overwhelmed, and we sought a testing scheme that
possessed the following properties:

• Automatic: Testing should proceed without human
involvement, and therefore be relatively cheap.
The technique should be easy to incorporate into
nightly regression testing.

• Complete: Testing should generate numerous test
cases that cover as much of the functionality of a
virtual machine as possible. It should also admit a
metric of progress that correlates with the amount
of assurance in the virtual machine being tested.

• Conservative: Bad Java bytecodes should not be
allowed to pass undetected through the bytecode
verifier, and incorrectly executed instructions in
the compiler or interpreter should be detected.

• Well structured: Examining, directing, check-
pointing and resuming verification efforts should
be simple. Error messages should be descriptive;
that is, it should be easy for a programmer to track
down and fix a problem.

• Efficient: Testing should result in a high-
confidence Java virtual machine within a reason-
able amount of time.

The rest of this paper describes our experience with
lava aimed at achieving these goals.

3. Lava and Grammar-based Test Genera-
tion

Our approach to test generation is to use an automated,
well-structured process driven by a production gram-
mar. A production grammar is the opposite of a regu-
lar parsing grammar in that it produces a program (i.e.
all terminals, or tokens) starting from a high-level de-
scription (i.e. a set of non-terminals). The composition
of the generated program reflects the restrictions
placed on it by the production grammar. Figure 1 il-
lustrates the high-level structure of the test generation
process. A generic code-generator-generator parses a
Java bytecode grammar written in lava and emits a
specialized code-generator. The code-generator is a
state machine that in turn takes a seed as input and
applies the grammar to it. The seed consists of the
high-level description that guides the production proc-
ess. Running the code-generator on a seed produces

test cases in Java bytecode that can then be used for
testing.

The input to the lava code-generator-generator consists
of a conventional grammar description that resembles
the LALR grammar specification used in yacc (Figure
2). This context-free grammar consists of productions
with a left-hand side (LHS) containing a single non-
terminal that is matched against the input. If a match is
found, the right-hand side (RHS) of the production
replaces the LHS. As with traditional parser systems,
we use a two-phase approach in lava for increased
efficiency and ease of implementation. The code-
generator-generator converts the grammar specifica-
tion into a set of action tables, and generates a code-
generator that performs the actual code production
based on a given seed. In essence, the code-generator-
generator performs code specialization on a generic
production system for a particular grammar. We
picked this two-phase approach to increase the effi-
ciency of the code-generator through program spe-
cialization.

Figure 1. The structure of the test generation proc-
ess. A code-generator-generator parses a production
grammar, generates a code-generator, which in turn
probabilistically generates test cases based on a seed.

 Virtual Machine

 Grammar
 =>

 =>

 =>

 Test N Test 1

 Seed
 Code Generator

 Code Generator Generator

 Test 2

The figure, taken from the paper, carries the following caption (in the paper):
The structure of the test generation process. A code-generator-generator
parses a production grammar, generates a code-generator, which in turn
probabilistically generates test cases based on a seed.

13

4.5 Sheard01

Sheard01 – Data

Citation
[29]

Title
Accomplishments and Research Challenges in Meta-programming

Online URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6848

Required concepts
functional programming, metaprogramming

Provided concepts
taxonomy of metaprogramming, program representation, quasi-quotation,
intensional analysis, staged computation, MetaML

Annotation
The paper provides a (possibly outdated) overview over meta-programming
with focus on the functional approach towards program representation,
code generation, and intensional code analysis. The paper aims to pro-
vide a taxonomy of metaprogramming and it discusses problems in
metaprogramming in a systematic and illustrative manner. MetaML
is shortly introduced as a particular metaprogramming language. The
paper brings up research challenges related to, e.g., dependent typing.

14

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6848

Sheard01 – Illustration

The figure, taken from the paper, shows the MetaML-based definition of a
staged exponentiation function. The power gen function describes the code
generation for the n-th power. The power code value holds the code for the
3rd power. The power fun function is the function for said code, which we
can ultimately apply.

15

4.6 KurtevBA02

KurtevBA02 – Data

Citation
[18]

Title
Technological spaces: An initial appraisal

Online URL
http://eprints.eemcs.utwente.nl/10206/01/0363TechnologicalSpaces.pdf

Required concepts
model driven engineering

Provided concepts
technological space

Annotation
As suggested by the title, this is the record of the introduction of the
technological space notion. Several spaces are identified and discussed:
abstract/concrete syntaxes, database management systems, XML, on-
tology engineering, and MDA. The megamodel underlying the spaces is
discussed and instantiated for some spaces. The need for and the role
of bridges between the spaces is explained. See [3] for another, more
recent description of technological spaces.

16

http://eprints.eemcs.utwente.nl/10206/01/0363TechnologicalSpaces.pdf

KurtevBA02 – Illustration

 2

achieving it in one space compared to the other one and also to evaluate the export/import facilities
between the spaces. In Figure 1, we do not represent all the bridges among the TSs and the figure does not
suggest any superiority for any one of them.

!"#$$#"

%"&'"#$

!"#$%&'$
()*'%+$+
,-*$&.+#

()*+$#
&",-.-

-&)/$+01

/01

()*+$#

-#1#

230,

.&234+5+4
601&4&'7

601&4&'7

4*$)5)6-
+*67*++%7*6

8+1#3$&9+4

8&9+4

02!

Figure 1 Five TSs and some bridges between them

This paper is organized as follows. After the introduction, section 2 provides a brief insight on some TSs
for global understanding. Space limitation does not permit a complete coverage of each technology, but
some pointers are provided for further reading. Section 3 presents a comparison of the features of various
TSs. Section 4 deals with interoperability bridges among different spaces. Section 5 describes some related
work. Finally, section 6 concludes the paper by providing some suggestions on how to interpret this work
and how to integrate these preliminary findings in concrete engineering practice.

2 Description of some TSs
Before starting our discussion, we provide a short presentation of some of the TSs that will be referred to in
the rest of the paper.

Figure 2 MDA, XML and AS Technological Spaces

2.1 The MDA TS
Model Driven Architecture (MDA) [22] is an approach recently proposed by OMG1. According to MDA,
the software development process is populated with a number of different models, each representing a
particular view on the system being built. Models are written in the language of their meta-model. There
are several standard meta-models available in the context of MDA, the most popular is the UML meta-

1 An alternative approach for manipulation of models has been proposed in [3].

The figure, taken from the paper, shows five technological spaces and bridges
between them.

17

4.7 Thomas03

Thomas03 – Data

Citation
[31]

Title
The Impedance Imperative, Tuples + Objects + Infosets = Too Much
Stuff!

Online URL
http://www.jot.fm/issues/issue_2003_09/column1.pdf

Required concepts
data programming

Provided concepts
impedance mismatch

Annotation
The paper (a column, in fact) takes a critical look at data programming—
specifically in the sense of CRUD (Create, Read, Update, Delete). The
discussion covers indexed files, SQL and database access APIs, object-
oriented databases, modern wrapping/mapping-based approaches (e.g.,
object/relational mapping). The column identifies various problems
with data programming: diversity of data modeling and CRUD pro-
gramming options and the practical need to mix them, difficulties of
integrating different type systems and data query/transformation lan-
guages, proprietary developments, performance issues, and complexity
of support technologies. The discussion also briefly touches some con-
tenders that may address some of the problems. The paper may be a
good starting point to look for technical publications on the topic.

18

http://www.jot.fm/issues/issue_2003_09/column1.pdf

Thomas03 – Illustration

http://en.wikipedia.org/wiki/File:Bermuda_Triangle.png

The figure, taken from Wikipedia, obviously shows the Bermuda triangle.
While working with Erik Meijer on [20, 21], I picked up his intuition that
data programming (because of the impedance mismatch) is essentially like
operating in the Bermuda triangle. That is, data may disappear, if we al-
low this exaggeration. Just replace Bermuda, Florida, and Puerto Rico by
XML, relational databases, and objects. (The idea of a triangle is an under-
statement because there are, of course, more competitors, e.g., Cobol and
ontologies.)

19

4.8 Hainaut06

Hainaut06 – Data

Citation
[11]

Title
The Transformational Approach to Database Engineering

Online URL
http://link.springer.com/chapter/10.1007%2F11877028_4

Required concepts
entity-relationship model, relational database

Provided concepts
schema normalization, logical design, schema integration, view deriva-
tion, schema equivalence, data conversion, data reverse engineering,
schema optimization, data access wapper generation

Annotation
The paper describes fundamental and practical aspects of database
transformation techniques. In particular, the notion of transformation
is developed in combination with the correctness and reversibility prop-
erties.

20

http://link.springer.com/chapter/10.1007%2F11877028_4

Hainaut06 – Illustration
 The Transformational Approach to Database Engineering 111

 P = source schema Q = target schema

Σ5 D
C

C1
C2

B
B1
B2

A
A1
A2

T5

⇐
T5'

1-1

0-1r

1-1

0-1 s

A
A1
A2
excl: s.C

r.B

C
C1
C2

B
B1
B2

Fig. 11. Transforming an is-a hierarchy into one-to-one relationship types and conversely. The
exclusion constraint (excl:s.C,r.B) states that an A entity cannot be simultaneously linked to a B
entity and a C entity. It derives from the disjoint property (D) of the subtypes.

Transformations Σ3 and Σ4 showed how to process standard multivalued attributes.
When the collection of values is no longer a set but a bag, a list or an array, operators
to transform them into standard multi-valued attributes are most useful. Transforma-
tions Σ6 in Fig. 12 are dedicated to arrays. Similar operators have been defined for the
other types of containers.

 P = source schema Q = target schema

Σ6

A
A1
A2[0-5] array
A3

T6

⇐
T6'

A
A1
A2[5-5]

Index
Value[0-1]

A3
id(A2):

Index

Fig. 12. Converting an array A2 into a set-multivalued attribute and conversely. The values are
distinct wrt component Index (id(A2):Index). The latter indicates the position of the cell that
contains the value (Value). The domain of Index is the range [1..5].

Attributes defined on the same domain and the name of which suggests a spatial or
temporal dimension (e.g., departments, countries, years or pure numbers) are called
homogeneous serial attributes. In many situations, they can be interpreted as the rep-
resentation of an indexed multivalued attributes (Fig. 13). The identification of these
attributes must be confirmed by the analyst.

The figure, taken from the paper, shows a particular transformation rule.
Quoting from the paper “Transforming an is-a hierarchy into one-to-one rela-
tionship types and conversely. The exclusion constraint (excl:s.C,r.B) states
that an A entity cannot be simultaneously linked to a B entity and a C entity.
It derives from the disjoint property (D) of the subtypes”

21

4.9 HappelS06

HappelS06 – Data

Citation
[12]

Title
Applications of Ontologies in Software Engineering

Online URL
https://km.aifb.kit.edu/ws/swese2006/final/happel_full.pdf

Required concepts
software engineering, ontology

Provided concepts
analysis, design, requirements engineering, component reuse, imple-
mentation, modeling, documentation, semantic middleware, semantic
web service, maintenance, testing

Annotation
This paper takes an inventory of applications (usage categories) of on-
tologies in software engineering. It is rich in pointing out the relevance
and potential of ontologies in various contexts (e.g., lifecyle phases) in
software engineering.

22

https://km.aifb.kit.edu/ws/swese2006/final/happel_full.pdf

HappelS06 – Illustration

Applications of Ontologies in Software Engineering 11

usage at run-time and development time. Second, we look at the kind of knowledge
the ontology actually compromises. Here, we distinguish between the problem
domain that the software system tries to tackle itself, and infrastructure aspects to
make the software or its development more convenient. Putting these two dimensions
together, we end up with the matrix in figure 1. We see four basic areas there:

Ontology-driven development (ODD) subsumes the usage of ontologies at

development time that describe the problem domain itself. Prime example are the
approaches in the context of MDD, presented in sec. 2.2.1.

Ontology-enabled development (OED) also uses ontologies at development time,
but for supporting developers with their tasks. For example, component search (sec.
2.1.2) or problem-solving support (sec. 2.4.1) can be put in here.

Ontology-based architectures (OBA) use an ontology as a primary artifact at run-
time. The ontology makes up a central part of the application logic. Business rule
approaches are an example for this kind of application.

Ontology-enabled architectures (OEA) finally, leverage ontologies to provide
infrastructure support at the run-time of a software system. An example are semantic
web services, where ontologies add a semantic layer on top of the existing web
service descriptions, adding functionality for the automatic discovery, matching and
composition of service-based workflows.

ODD
(e.g. MDA)

OBA
(e.g. Business-Rules)

OED
(e.g. Knowledge

Management)

OEA
(e.g. Semantic Web

Services)

In
fra

st
ru

ct
ur

e
So

ftw
ar

e

dev-time run-time

O
nt

ol
og

y
m

od
el

s…

Roles of ontologies in the
context of software engineering

ODD
(e.g. MDA)

OBA
(e.g. Business-Rules)

OED
(e.g. Knowledge

Management)

OEA
(e.g. Semantic Web

Services)

In
fra

st
ru

ct
ur

e
So

ftw
ar

e

dev-time run-time

O
nt

ol
og

y
m

od
el

s…

Roles of ontologies in the
context of software engineering

Figure 1: Usage categories for ontologies in Software Engineering

Although the four clusters seem to be quite distinct on first glance, there may be

overlaps in some application areas. In particular, the classification scheme does not
make any statement about clustering within or between the categorization groups.
Indeed, in order to make the case for the large-scale reusability of ontologies, it is
crucial to provide evidence for a broad range of applications. So one specific ontology
might be useful in several of the described dimensions in parallel.

The figure is taken from the paper. Different roles of ontologies in the
context of software engineering are identified along two axes. Legend of
acronyms used: Ontology-driven development (ODD), Ontology-enabled de-
velopment (OED), Ontology-based architectures (OBA), Ontology-enabled
architectures (OEA).

23

4.10 Bezivin06

Bezivin06 – Data

Citation
[3]

Title
Model Driven Engineering: An Emerging Technical Space

Online URL
http://link.springer.com/chapter/10.1007%2F11877028_2

Required concepts
software development

Provided concepts
technological space, model driven engineering, model transformation,
metamodeling

Annotation
The paper describes the basic principles and practical characteristics of
model driven engineering (MDE). The technological space notion (see
also [18]) is used to organize much of the description. In particular,
MDE is also compared to other technological spaces. The key notions
of metamodeling and model transformation are illustrated. Various
technologies and standards are placed in context, e.g., EMF and ATL.

24

http://link.springer.com/chapter/10.1007%2F11877028_2

Bezivin06 – Illustration

60 J. Bézivin

needs injection from its TS to the model engineering TS. The need for extraction is
also quite important: many existing tools do not read XMI. A simple example is the
Java compiler. What we need here is code generation, which may be seen as a specific
case of model extraction. Many other TSs require both injectors and extractors:
database systems provide another example in which database schemes have to be
generated from model definitions.

5.6 Conclusions

What appear in this presentation are the high complementarities between all four
presented functional blocks (ATL, AMW, AM3, and ATP). There are plenty of
applications that make use of these four kinds of functionalities at the same time.

6 Conclusions

We have presented in this paper our definition of MDE basic principles and our view
of an MDE implementation architectural style. The basic principle on which this work
is based (Models as first class entities) is common to many current research
communities (Model Management, Model Integrated Computing, etc.) and similar
goals and means may be found in other TSs. This is summarized in Fig. 18.

Fig. 18. Summarizing the Basic Principles

We have taken here a broad view of model engineering as encompassing not only
the MDA™ OMG proposal or the Microsoft SoftwareFactories/DSL view, but also
other approaches like Model Integrated Computing, Generative Programming, Model
Management and many more. We distinguished the three levels of principles,
standards, and tools to facilitate the discussion. We suggested the idea that there may
exist a common set of principles that could be mapped to different implementation
contexts through the help of common standards. We have illustrated our claim with
AMMA, an architectural organization that is currently mapped onto the EMF
extension of the Eclipse platform.

The figure, taken from the conclusion of the paper, on the left, highlights two
important relations involved in MDE—the ‘isRepresentedBy’ relation that
some thing (perhaps a model) is represented by a model and the ‘conformsTo’
relation related to metamodeling. On the right, the progression from real-
world entities, through models and metamodels, up to metametamodels is
megamodeled.

25

4.11 BezivinBFGJKKP06

BezivinBFGJKKP06 – Data

Citation
[4]

Title
A Canonical Scheme for Model Composition

Online URL
http://ssei.pbworks.com/f/Bezivin.A+Canonical+Scheme+for+Model+Composition.

pdf

Required concepts
metamodeling

Provided concepts
model composition, model weaving, Glue Generator Tool, Epsilon Merg-
ing Language, Atlas Model Weaver

Annotation
The paper surveys different methods and tools for model composition.
It also analyzes composition scenarios and assesses them, for example,
in terms of degree of feasible automation. Further, general requirements
for model composition tools are postulated and the degree of tool sup-
port is considered for existing technologies (at the time of writing).

26

http://ssei.pbworks.com/f/Bezivin.A+Canonical+Scheme+for+Model+Composition.pdf
http://ssei.pbworks.com/f/Bezivin.A+Canonical+Scheme+for+Model+Composition.pdf

BezivinBFGJKKP06 – Illustration

348 J. Bézivin et al.

more) of output model. First, MAB contains one class Professor that contains the
information from all the other three classes. Second, MAB contains classes Professor
and AssistantProfessor; Teacher is combined with Professor. Third, MAB has three
classes: Professor, AssistantProfessor as in the previous scenario, and a new class
VisitingProfessor. This class contains information about occasional visitors.

There are different options to implement a composition operation. One is to write a
transformation by hand. However, model composition scenarios have a set of
frequently used primitives with specific semantics, such as “merge”, “override” or
“extends”. These primitives link concepts that represent similar information. We must
raise the abstraction level of current transformation languages to create composition
links. The links must be saved, as they are the specification of the operation.

In AMW, the production of a composition operation is divided in two phases. First,
a weaving model captures the links between the input model elements, for example
indicating that Teacher and Professor are combined into Professor, or that Visiting-
Professor is a new class to be created. The weaving model conforms to a weaving
metamodel. It is a domain specific metamodel dedicated to composition scenarios. It
contains elements such as “rename”, “override”, “merge”, and elements specifying
how to solve conflicts between the input models.

Second, the weaving model is used to generate a transformation. This transfor-
mation is the final composition operation. The code complexity is not an issue here
because the transformation is automatically produced. The transformation takes two
input models and produces the composed model as output.

2.1.1 Weaving Model
In order to provide a description of a weaving model, let us suppose we have two
metamodels LeftMM and RightMM. We need to establish links between their
elements. The type of links specifies how the elements are composed. Some issues
need be considered regarding the set of links between elements of both metamodels:

• The set of links cannot be automatically generated because it is often based on
design decisions or various complex heuristics;

• It should be possible to save this set of links as a whole, in order to use them later
to produce the composition operation.
The weaving model conforms to a weaving metamodel WMM. The weaving model

is produced by a match operation. A match operation is a combination of automatic
techniques with user interaction. The produced weaving model relates with the source
and target metamodels LeftMM and RightMM. Figure 1 illustrates the conformance
relations of LeftMM, RightMM and WM.

Fig. 1. Weaving conformance relations The figure, taken from the paper’ section on the Atlas Model Weaver, shows
the schema (say, megamodel) of models and metamodels involved in a weav-
ing (i.e., composition) situation together with the required conformance re-
lationships.

27

4.12 BravenboerTV06

BravenboerTV06 – Data

Citation
[5]

Title
Declarative, formal, and extensible syntax definition for AspectJ

Online URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.7867

Required concepts
parsing, AspectJ

Provided concepts
scannerless parsing, Generalized LR parsing

Annotation
The paper is a showcase of using generalized LR parsing in the imple-
mentation of frontends. While the underlying theory has been pub-
lished elsewhere, the paper is nevertheless suitable for studying the
basics of the method. AspectJ is picked as the target of a case study
because parsing AspectJ challenges more convential parsing techniques.
We mention, in passing, another recent paper on generalized LR pars-
ing [8].

28

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.7867

BravenboerTV06 – Illustration

means that it is not allowed as a simple type name, and cannot be
the first identifier of a qualified type name, which could refer to
a top-level package or an enclosing class. For example, the first
import declaration is not allowed, but the second one is 5:

import privileged.*;
import org.privileged.*;

If keywords would be allowed as simple type names, the grammar
would no longer be LALR(1). The keywords as type names intro-
duce shift-reduce and reduce-reduce conflicts. Hence, a qualified
name is defined to be an Identifier, followed by one or more
JavaIdentifiers:

ClassOrInterface ::= Name
SingleTypeImportDeclarationName ::= ’import’ Name
Name -> SimpleName or QualifiedName
SimpleName -> ’Identifier’
QualifiedName ::= Name ’.’ JavaIdentifier

Pointcuts The names of the primitive AspectJ pointcut designa-
tors, such as get, set, call, etc., are not declared as keywords.
The scanner does not have any knowledge about pointcuts, so the
names are parsed as identifiers, unless the pointcut designator was
already a keyword, such as if. As we have seen earlier, the name
if is still accidentally a reserved keyword, but the names of the
other pointcut designators are not, so they can be used in point-
cut expressions, for example in name patterns. However, a named
pointcut with the same name as a primitive pointcut designator can
not be used (though surprisingly, it can be declared without warn-
ings).

Around Advice Declarations Around advice declarations intro-
duce another complication. Whereas after and before advice dec-
larations immediately start with the keywords after or before,
around advice declarations start with a declaration of the return
type. This introduces a shift-reduce conflict between an around ad-
vice declaration and a method declaration. For this reason, ajc
does not allow methods named around in aspect declarations. Of
course, it would not be acceptable to disallow the name around
for all methods, including the ones in regular Java classes, so this
restriction should only apply to aspect declarations (advice cannot
occur in class declarations). Therefore, the ajc grammar needs to
duplicate all the productions (19) from an aspect declaration down
to a method declaration, where finally the name of a method is re-
stricted to a JavaIdNoAround:

JavaIdNoAround -> ’Identifier’
JavaIdNoAround -> AjSimpleNameNoAround
MethodHeaderNameNoAround ::=

Modifiersopt TypeParameters Type JavaIdNoAround ’(’

4.3 The abc Scanner and Parser
The parser of abc6 is based on Polyglot [28], which provides PPG,
a parser generator for extensible grammars based on the LALR
CUP parser generator. PPG acts as a front-end for CUP, by adding
some extensibility and modularity features, which we will discuss
later in Section 6. Polyglot’s scanner for Java is implemented using
the JFlex scanner generator. Polyglot does not feature an extensible
scanner, so the abc compiler implements its own scanner for As-
pectJ, which takes an approach radically different from ajc. The
abc scanner and parser can parse the entire source file in a single
continuous parse. So, the Java, aspect, and pointcut language are
defined in a single JFlex specification and CUP grammar. The abc

5 This is related to ajc bug 37069 at https://bugs.eclipse.org/
bugs/show bug.cgi?id=37069
6 Our study is based on abc version 1.1.0, which supports ajc 1.2.1 with
some minor differences

Java

AspectJ

PointcutPointcut If

class
aspect,class

[;{)]

pointcut

[;{)]

per*,pointcut,after

if

[)]

class

class aspect

Figure 7. Lexical state transitions in the abc scanner

scanner is designed to immediately produce the correct tokeniza-
tion, so there is no need to fix incorrect tokenizations later. Also,
the scanner does not interact with the parser.

4.3.1 Managing Lexical State
The abc scanner performs a rudimentary form of context-free pars-
ing to recognize the global structure of the source file while scan-
ning. The scanner keeps track of the current state (or context), by
using a set of state transition rules that have been determined by
a detailed analysis of the possible state switches in AspectJ. The
lexical states and the transitions between them are illustrated in
Figure 7. Some transitions have additional conditions, which we
will explain later. Maintaining lexical state is not uncommon. It is
widely used for scanning string literals and it is a standard feature
of JFlex. Every lexical state has its own set of lexical rules, which
means that a sequence of characters can be scanned as a different
token in different states.

Pointcut Declarations A simple example of such a state transi-
tion rule, is that a pointcut state is entered after the pointcut key-
word and exited after a ";" in pointcut context. For this example,
the pointcut keyword and the semicolon indicates the start and
end of a pointcut declaration, respectively. The exit of the pointcut
state after a pointcut declaration is implemented in the flex specifi-
cation by returning to the previous state (which is maintained on a
stack) whenever the ";" token is encountered in the pointcut state
(POINTCUT):

<POINTCUT> {
";" {

returnToPrevState();
return op(sym.SEMICOLON);

}}

For reasons of extensibility, keywords and their corresponding
actions for entering lexical states are not specified in the flex
specification, but are initialized from the Java code by means
of a Java interface LexerAction whose instances can be reg-
istered with the scanner. LexerActions are always attached to
keywords and can change the lexical state when the keyword has
been scanned. For example, the following Java statement adds the
keyword pointcut, which starts the pointcut declaration, to the
scanner and specifies that the new lexical state after this keyword
is pointcut.

lexer.addAspectJKeyword("pointcut",
new LexerAction_c(new Integer(sym.POINTCUT),

new Integer(lexer.pointcut_state())));

In this way, keywords are registered per lexical state in a HashMap.
Initially, keywords are always scanned as identifiers and depending
on the current lexical state, the identifier is turned into a keyword
by a lexer action. As a side effect, the lexer action can modify
the lexical state of the scanner. Figure 8 shows a fragment of the
Java class LexerAction c and the invocation of the lexer actions
from the flex specification after an Identifier has been scanned.

In the figure, taken from the paper, the non-trivial issue of state maintenance
in a scanner-based frontend for AspectJ is described at a higher level of
abstraction. Depending on the context of parsing (Java, AspectJ, Pointcut),
the scanner needs to work differently. In scannerless implementation, such
extra effort is not needed.

29

4.13 AlvesV09

AlvesV09 – Data

Citation
[1]

Title
A Case Study in Grammar Engineering

Online URL
http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/grammar-eng.

pdf

Required concepts
software engineering, parsing, metrics

Provided concepts
grammar engineering, grammar recovery, grammar metrics, grammar
testing, grammar versioning

Annotation
The ‘Grammarware Agenda’ [25] properly established the terms gram-
mar engineering (and grammarware engineering). The present paper
presents a study that involves several areas of grammarware engineer-
ing. The study is concerned with the development of a VDM-SL gram-
mar for actual parsing from its ISO standard language reference. The
study involves grammar transformation (recovery), testing, metrics,
and version management.

30

http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/grammar-eng.pdf
http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/grammar-eng.pdf

AlvesV09 – Illustration

Table 1. Grammar metrics for the three release versions.

Version term var mcc avs-n avs-p hal-e timp clev nslev dep hei

initial 138 161 234 4.4 2.3 55.4 1% 34.9 4 69 16
disambiguated 138 118 232 6.4 2.8 61.1 1.5% 43.9 4 39 16
refactored 138 71 232 10.4 3.3 68.2 3% 52.6 3 27 14

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

VAR

HAL (K)

CLEV

Fig. 6. The evolution of VAR, HAL-E, and CLEV grammar metrics during develop-
ment. The x-axis represents the 48 development versions.

The initial number of 161 non-terminals (VAR) decreases via 118 after disam-
biguation to 71 after refactoring. These numbers are the consequence of changes
in grammar shape where non-terminals are replaced by their definition. In the
disambiguation phase (43 non-terminals removed), such non-terminal inlining
(unfolding) was performed to make formulation of the disambiguation informa-
tion possible, or easier. For instance, after inlining, simple associativity attributes
would suffice to specify disambiguation, while without inlining more elaborate
reject productions might have been necessary. In the refactoring phase (47 non-
terminals removed), the inlinings performed were mainly removals of injections.
These were performed to make the grammar easier to read, more concise, and
suitable for creation of ASTs closer to the abstract syntax specification in the
standard.

The value of the McCabe cyclometric complexity metric decreases by 2 during
disambiguation, meaning that we eliminated two paths in the flow graph of the
grammar. This was caused by refactoring the syntax of product types and union
types in similar ways. The reason for this refactoring during the disambiguation
phase was to make disambiguation easier. In case of product types, the following
two production rules:

ProductType -> Type

{ Type "*" }2+ -> ProductType

were replaced by a single one:

Type "*" Type -> Type

The figure, taken from the paper, shows the development of different gram-
mar metrics over time. The timeline is defined by the commits of the gram-
mar, as it was changed over time to complete the recovery process and to
otherwise develop the parser. Test coverage also drives this process.

31

4.14 Wachsmuth09

Wachsmuth09 – Data

Citation
[35]

Title
A Formal Way from Text to Code Templates

Online URL
http://link.springer.com/chapter/10.1007%2F978-3-642-00593-0_8

Required concepts
metamodeling, formal semantics

Provided concepts
template instantiation

Annotation
The paper addresses the problem of unsafe template instantiation; see
[13] for a description of the problem. Both papers share the overall
line of attack: adaptation of a language’s metamodel (syntax) so that
template-instantiation concepts are made available in a systematic way.
The present paper stands out by deploying techniques of programming
language theory (operational semantics and type systems) as well as
grammar adaptation based on appropriate transformation operators in
the tradition of [19].

32

http://link.springer.com/chapter/10.1007%2F978-3-642-00593-0_8

Wachsmuth09 – Illustration

A Formal Way from Text to Code Templates 117

introduce texpr ttype tvn tn
introduce targ = ttype tvn
foreach nt : N

include nt = ≪expand tn texpr ∗ ≫
include nt = ≪ if texpr∗ ≫ nt ≪else≫ nt ≪endif ≫
include tmpl = ≪define ⌊nt⌋ tn targ∗ ≫ nt ≪enddef ≫
include tstmt = nt
include dn = ⌊nt⌋

endfor
foreach nt : M

fold ntM = nt
include ntM = ≪ texpr ≫
include tstmt = ntM

include dn = ⌊nt⌋
endfor
foreach nt : L

fold ntL = nt
include ntL = ≪ for tvn in texpr ≫ nt ≪endfor≫
include tstmt = ntL

endfor
introduce tcoll = tmpl∗

Fig. 7. Generic adaptation script for the syntactical enhancement of a target language

morphem class to a fresh nonterminal and include a rule for expression evalu-
ation. Fourth, we enhance the definition of nonterminals occurring in a Kleene
closure. We fold each of these domains to a fresh nonterminal and include a rule
for iteration. Finally, we introduce template collections.

The result of the adaptation is a grammar for a template language particu-
larly concerned with the target language. In this template language, templates
are associated with a particular syntactical domain of the target language. Fig-
ure 8 gives an example. The upper part of the figure shows the grammar of a
simple programming language PL: A program prog consists of a list of state-
ments pstmt∗. A statement is either a variable declaration, an assignment, a
while loop, or a conditional statement. An expression pexpr is either an integer
number, a character string, a variable, a sum, a difference, or a string concate-
nation. The lower part of Fig. 8 shows the resulting grammar for the template
language TLPL.

Static semantics. During the syntactical enhancement, two helper domains
tstmt and dn are constructed. This allows us to use a generic model of the static
semantics. The model differs only slightly from the model for TL⊥. Figure 9 high-
lights the modifications. In Θ, we keep the syntactical domain of the template in
addition to the parameter types. In the well-typedness judgement for template
statements, we assign the addressed syntactical domain. Furthermore, we add a
judgement yielding the syntactical domain of an expression when converted into
text.

The figure, taken from the paper, shows a transformation script which loops
over symbols of the underlying language grammar and includes additional
productions in a systematic manner so that concepts for template instantia-
tion are made available.

33

4.15 Moody09

Moody09 – Data

Citation
[23]

Title
The ”Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering

Online URL
http://www.dama.org.au/wp-content/uploads/2013/02/IEEE-TSE-35-5-November-December-2009-The-Physics-of-Notations-D.

L.Moody_.pdf

Required concepts
visual language

Provided concepts

Annotation
We quote from the paper: “This paper defines a set of principles for
designing cognitively effective visual notations: ones that are optimised
for human understanding and problem solving. Together these form
a design theory, called the Physics of Notations as it focuses on the
physical (perceptual) properties of notations rather than their logical
(semantic) properties. The principles were synthesised from theory and
empirical evidence from a wide range of fields and rest on an explicit
theory of how visual notations communicate. They can be used to
evaluate, compare, and improve existing visual notations as well as
to construct new ones. The paper identifies serious design flaws in
some of the leading SE notations together with practical suggestions
for improving them. It also showcases some examples of visual notation
design excellence from SE and other fields.”

34

http://www.dama.org.au/wp-content/uploads/2013/02/IEEE-TSE-35-5-November-December-2009-The-Physics-of-Notations-D.L.Moody_.pdf
http://www.dama.org.au/wp-content/uploads/2013/02/IEEE-TSE-35-5-November-December-2009-The-Physics-of-Notations-D.L.Moody_.pdf

Moody09 – Illustration

760 IE E E TRANSACTIONS ON SO FTWARE ENGINE ERING , VOL. 35, NO . 5, NOVEMBER-DE C EMBER 2009

3. DESCRIPTIVE THEORY: HOW VISUAL NOTATIONS
COMMUNIC ATE

This section defines a theory of how visual notations communi-
cate based on extant theories from communication, semiotics,
graphic design, visual perception and cognition. This defines a
descriptive (positive) theory of visual notations, or in Gregor’s
[45] terminology, a Type IV theory (a theory for explaining
and predicting) (Figure 5). Only by understanding how and why
visual notations communicate can we improve their ability to
communicate: description provides the foundation for prescrip-
tion.

3.1 Communication Theory
At the top level, the theory is an adaptation of Shannon and
Weaver’s widely-accepted theory of communication [120] (or
more precisely, a specialisation of this theory to the domain of
visual notations). As shown in Figure 6, a diagram creator
(sender) encodes information (message) in the form of a dia-
gram (signal) and the diagram user (receiver) decodes this
signal. The diagram is encoded using a visual notation (code),
which defines a set of conventions that both sender and receiver
understand. The medium (channel) is the physical form in
which the diagram is presented (e.g. paper, whiteboard, com-
puter screen). Noise represents random variation in the signal
which can interfere with communication. The effectiveness of
communication is measured by the match between the intended
message and the received message (information transmitted).

Encoding DecodingDiagram
(signal)

Diagram
(signal)

Channel
(Medium)Noise

Diagram creator
(Source)

Intended
message

Diagram user
(Destination)

Received
messageVisual Notation

(Code)

information transmitted

F igure 6. Theory of Diagrammatic Communication: communication
consists of two complementary processes: encoding and decoding.

In this theory, communication consists of two complementary
processes: encoding (expression) and decoding (interpretation).
To optimise communication, we need to consider both sides:
y Encoding: what are the available options for encoding in-

formation in visual form? This defines the design space:
the set of possible graphic encodings for a given message,
which is virtually unlimited [8].

y Decoding: how are visual notations processed by the human
mind? This defines the solution space: principles of human
information processing provide the basis for choosing
among the infinite possibilities in the design space.

3.2 The Design Space (Encoding Side)
The seminal work in the graphic design field is Bertin’s Semiol-
ogy of Graphics [8]. Bertin identified 8 visual variables that
can be used to graphically encode information (Figure 7). These
are divided into planar variables (the two spatial dimensions),
and retinal variables (features of the retinal image). Bertin’s

work is widely considered to be for graphic design what the
periodic table is for chemistry: the visual variables define a set
of atomic building blocks that can be used to construct any vis-
ual representation, in the same way the periodic table can be
used to construct any chemical compound. The visual variables
thus define the dimensions of the graphic design space.

TextureOrientationBrightnessVertical
Position

ColourSizeShapeHorizontal
Position

RETINAL VARIABLES
PLANAR

VARIABLES

0

90

45o

o

oHighMediumLow

Red Green Blue

Small

Medium

Large

F igure 7. Visual Variables [8]: these define a set of elementary
graphical techniques for constructing visual notations3

The visual variables also define a set of primitives – a visual
alphabet – for constructing visual notations: graphical symbols
can be constructed by specifying particular values for visual
variables (e.g. shape = rectangle, colour = green). Notation de-
signers can create an unlimited number of graphical symbols by
combining the variables together in different ways.

Primary Notation, Secondary Notation and Noise
Variations in visual variables convey meaning whether intended
to or not. For example, size, colour and location of symbols
have no formal meaning in UML class diagrams. However if
these variables vary (intentionally or unintentionally), they will
convey information over and above the literal meaning of the
diagram. There are strong perceptual interpretations associated
with such variations that are difficult to consciously override.
Such variations play a similar role to non-verbal communica-
tion (e.g. facial expressions, tone of voice) in speech and can
either reinforce or interfere with the intended meaning.

Primary notation refers to the formal definition of a visual
notation: the set of graphical symbols and their prescribed (lit-
eral) meanings. Secondary (informal) notation refers to the
use of visual variables not formally specified in the notation to
reinforce or clarify meaning e.g. use of colour to highlight in-
formation. Secondary notation is not a trivial matter: Petre
[103] found that effective use of secondary notation was the
major distinguishing feature between expert and novice use of a
notation. Visual noise (accidental secondary notation) refers to
unintentional use or random variation in visual variables that
conflicts with or distorts the intended message [47, 96].

3.3 The Solution Space (Decoding Side)
Newell and Simon [91] showed that human beings can be con-
sidered as information processing systems. Designing cogni-
tively effective visual notations can therefore be seen as a prob-
lem of optimising them for processing by the human mind, in
the same way that software systems are optimised for particular
hardware. Principles of human graphical information process-
ing provide the basis for making informed choices among the
infinite possibilities in the graphic design space.

3 Brightness is used instead of value (Bertin’s term) to avoid confusion with

everyday usage of the word “value”. This variable defines a scale of relative
lightness or darkness (black = 0 Æ white = 10).

In the figure, taken from the paper and based on seminal work [2], different
visual variables are listed. These variables can thought of as defining a set
of primitives, we quote from the paper: “a visual alphabet–for constructing
visual notations: graphical symbols can be constructed by specifying par-
ticular values for visual variables (e.g., shape = rectangle, colour = green).
Notation designers can create an unlimited number of graphical symbols by
combining the variables together in different ways.”

35

4.16 RenggliGN10

RenggliGN10 – Data

Citation
[26]

Title
Embedding Languages without Breaking Tools

Online URL
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

Required concepts
Smalltalk

Provided concepts
embedded language

Annotation
The paper describes an embedding approach for the implementation
of domain-specific languages (DSLs). Specifically, DSLs are modeled
as language extensions of the underlying host language. The approach
addresses the challenge of providing the language extensions in a man-
ner that they integrate well with the development tools of the host
language. The paper presents the extensible system Helvetia which
intercepts the compilation pipeline of the Smalltalk host language to
seamlessly integrate language extensions. See [32] for another extensive
discussion of language embedding.

36

http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

RenggliGN10 – Illustration

5.1 Homogeneous Language Integration

Rules

<parse> <transform> <attribute>

Source
Code

Smalltalk
Parser

Semantic
Analysis

Bytecode
Generator

Executable
Code

Traditional Smalltalk Compiler

Pidgin

Creole

Argot

Fig. 3. The code compilation pipeline showing multiple interception paths.

In Smalltalk the unit of compilation is the method. Whenever a method is
saved, it automatically triggers the Smalltalk compiler within the same envi-
ronment. The source code and compiled methods as well as the compiler are
all available at runtime. As seen in Figure 3 we have enhanced the standard
compilation pipeline to be able to intercept the data passed from one compilation
step to the other. We are able to perform source-to-source transformations or
to bypass the regular Smalltalk parser altogether. Furthermore we are able to
perform AST transformations either before, instead of, or after semantic analysis.

The rules to intercept this transformation pipeline are defined using annotated
methods. These methods constitute conventional Smalltalk code that is called at
compile time [38]. The interception rules allow us not only to modify data in the
pipeline but also to bypass conventional components.

– A rule marked with <parser> allows one to intercept the parsing of the source
code. The result of a parser rule can be either a new source string (in case of
a source-to-source transformation) or a Smalltalk AST (in which the original
Smalltalk parser is skipped).

– A rule marked with <transform> is performed on the AST after parsing and
before semantic analysis. It allows developers to apply arbitrary transforma-
tions on the AST. Furthermore, it is possible to change the default semantic
analysis and instead perform a custom one.

– A rule marked with <attribute> is performed after symbol resolution and
before bytecode generation. This makes it possible to perform transformations
on the attributed AST as well.

Compilation errors are handled by the standard toolchain. Since all data
passed from one step to the next carries information on its original source location,

The figure, taken from the paper, shows different interception options for
realizing embedded languages in the Smalltalk-based Helvetia framework. A
pidgin does not require a new parser, but the code needs to be transformed
before the semantic analysis. A creole also requires a designated parser. An
argot only affects the backend.

37

4.17 HeidenreichJSWB09

HeidenreichJSWB09 – Data

Citation
[13]

Title
Generating Safe Template Languages

Online URL
https://www.st.cs.uni-saarland.de/~boehme/paper/GPCE09.pdf

Required concepts
metamodeling

Provided concepts
template instantiation

Annotation
The paper addresses the problem of unsafe template instantiation. Such
instantiation can be unsafe in the sense that string-level operations are
performed at run-time and thus it is not obvious or known at design
time whether the described instantiation will actually lead to syntac-
tically correct output eventually. The proposed approach involves the
addition of generic template-instantiation concepts to existing language
definitions in a generic manner. Thus, template instantiation would
only be described in terms of metamodel instantiation, thereby imply-
ing syntactically correctness. Similar problems are present in program-
ming languages with a macro system.

38

https://www.st.cs.uni-saarland.de/~boehme/paper/GPCE09.pdf

HeidenreichJSWB09 – Illustration

Figure 4. Metamodel for template concepts

4.1 Template Concepts
Conceptually, a template defines an artefact that provides built-in
support for variability. In other words, the template can be instan-
tiated to produce different variants. These variants are typically
called template instances. The selection of a variant is controlled
by template parameters. These parameters are evaluated when a
template is instantiated and based on concrete values the variant is
selected.

Among the various template languages that were developed
over the last decades, the ones providing simple imperative con-
structs are very popular especially among practitioners. The com-
mon concepts that can be found in such imperative template lan-
guages are placeholders, conditions and loops.

Placeholders (PH construct) can be used to insert elements orig-
inating from parameters upon template instantiation. These ele-
ments can be either primitive ones (e.g., strings or numbers) or
complex ones (e.g., structures passed as parameters). The latter is
obviously only possible if the object and the parameter language
share common concepts.

Conditions allow template designers to embed parts of the tem-
plate only if certain boolean constraints on the parameters are met.
Conditions can either consist of one branch (IF construct) or two
branches (IFELSE construct). In the former case, the branch is em-
bedded if the specified condition is true. The latter has a second
branch that is embedded if the opposite is true.

Loops (FOR construct) can be used to iterate over collections
in the parameter model. The body of the loop is then repeatedly
inserted into the template instance. Usually, the current element of
the iteration is available inside the loop, for example, by accessing
a variable.

To extend a language with template functionality the template
concepts need to be introduced into the language. Figure 4 shows
all concepts as EMOF metamodel. All types are abstract, because
they will always be subclassed. In the following two sections, we
describe how such an extension by subclassing can be performed.

4.2 Extending the Metamodel
After refactoring existing metamodels as described in Sect. 3.1,
one can start to add the concepts of template languages. Here,
the question is how the different concepts (PH, IF, IFELSE, FOR)
can be added in a meaningful way to a metamodel. To answer
this question, one must consider the semantics of the template
constructs. Upon template instantiation, the different constructs are
replaced by elements of the parameter model or static elements
of the template itself. To obtain a valid instance of the object
language, both the types and the cardinalities of inserted elements
must be correct. Thus, the metamodel should be extended such that
expansion of template constructs always inserts correct types and a
valid number of them.

Preserving Types For each reference (with a corresponding
type) we introduce specific subtypes of the template constructs.
These subtypes inherit both from the original type of the reference
and the abstract template construct. The inheritance relation to the
original type establishes the exchangeability of the new template

Cardinality IF (0::1) PH, IFELSE (1::1) FOR (0::⇤)
0::1 x x
1::1 x
0::⇤ x x x

Table 1. Compatible template concepts for reference cardinalities

construct with the original (static) element. The inheritance relation
to the abstract template construct allows to check and interpret the
template later on.

Each new subtype of If and ForEach is equipped with a
reference body. The subtypes of IfElse contain two references
(thenBody and elseBody). All these new references have the orig-
inal type. This construction allows exactly the elements that were
valid for the original reference inside of conditions and loops.

For placeholders, preserving the type is slightly different, be-
cause these are replaced with elements from the input model. The
obvious consequence is that only types that are shared by both the
object and the input language can be used here. Usually the inter-
section of the types of the two languages encloses only primitive
types. However, inserting complex types with a placeholder is also
possible as long as its type is available in both the object and the
input language.

Preserving Cardinalities To decide which concept is appro-
priate for which reference we consider the cardinality of the ref-
erence. Only constructs that are compatible (i.e., that produce the
same number of elements) are used. For example, loops can only be
introduced for references that have an unlimited upper bound. The
conditional IF statement can be introduced for references having
a lower bound of 0, because the condition of the IF might not be
fulfilled upon template instantiation potentially leading to no inser-
tion of an element. Conditionals with two branches (IFELSE) can
be used for references where the cardinality range encloses 1, be-
cause they produce an element in each branch. The same applies
to the PH concept, because placeholders are always replaced by a
single value, i.e., they can only be inserted where one element is
permitted by the cardinality of the reference.

A special case is the introduction of conditional statements
(both IF and IFELSE) for unlimited references (0::⇤). As both
constructs add either zero or one elements, which is permitted by
the cardinality, they can be used here too. Table 1 summarises
the relation between cardinalities of references and valid template
concepts.

In this paper we will restrict ourselves to the kinds of cardinali-
ties shown in Table 1. References with cardinalities having a lower
bound greater than one or an upper bound other than one or infin-
ity will simply not be extended with template concepts. This keeps
the template language safe, but restricts the metamodel design. In
Sect. 5.2.4 we will sketch possible solutions to handle references
having other cardinalities as well.

The result of this extension for our example language is shown
in Fig. 5. For each type of reference the appropriate template con-
cepts were introduced. By multiple inheritance the concrete con-
cept extends both the abstract concept (defined in the template con-
cept metamodel—Fig. 4) and the type of the respective reference.
For example, the class IfFeatureRecipeIngredients extends If

and FeatureRecipeIngredients.

4.3 Extending the Concrete Syntax
As discussed in Sect. 3.2, an EMFText text syntax specification
can be extended along with the metamodel. For this a new syntax
rule has to be introduced for each new concrete metaclass. As dis-
cussed above, the extended language contains different subclasses
of the four metaclasses representing the template concepts PH, IF,

102

The figure, taken from the paper, shows the metamodel for template-instantiation
concepts, e.g., a conditional and a loop form. The idea is that these concepts
can be specialized for the syntactic categories of the language that is to be
extended with template concepts. Whether or not a conditional or a loop is
allowed in a certain position also depends on the cardinalities of the model
element in the position. There is a generic algorithm to weave the template
support in a given metamodel for a language.

39

4.18 Cordy11

Cordy11 – Data

Citation
[7]

Title
Excerpts from the TXL Cookbook

Online URL
http://cs.queensu.ca/~cordy/Papers/JC_TXLCookbook_LNCS.pdf

Required concepts
software engineering

Provided concepts
source-code analysis, source-code transformation

Annotation
The paper captures some reusable knowledge of implementating soft-
ware components for source-code analysis and transformation. While
the paper is focused on TXL as the underlying transformation system,
the overall approach to knowledge representation would also make sense
for other systems. The following classes of problems are considered:
parsing, restructuring, optimization, static analysis, and interpretation.
The solutions to the problems are described in terms of ‘paradigms’
such as ‘Use sequences, not recursions’, ‘Preserve comments in output’,
‘Generate unique identifiers’.

40

http://cs.queensu.ca/~cordy/Papers/JC_TXLCookbook_LNCS.pdf

Cordy11 – Illustration
36 J.R. Cordy

!"#$!"#$%&'#())*+*%,$
!$%#&'$ -#./"#$$*%,0

!!!!!!12-,345#"0 (!16-,345#"0
)*

!!!!!!12!-7!160
$+, !"#$

!"#$%"&&'()*

!"#$%"&&'()* +

!,"%-*

!$%'-.%/*

!$%'-.%/*

!,"%-*

012 !)3-4"%* 5617

082 !)3-4"%*95687

!"#$%"&&'()*

!$%'-.%/*

!,"%-*

!)3-4"%* 568+617

Fig. 5. Pattern and replacement trees for the [resolveAdditions] rule

one match at a time in their scope, and following a replacement, search the entire
new scope for the next match.

Patterns may refer to a previously bound variable later in the same pattern
(technically called strong pattern matching). This parameterizes the pattern with
a copy of the bound variable, to specify that two parts of the matching in-
stance must be the same in order to have a match. For example, the following
rule’s pattern matches only expressions consisting of the addition of two identical
subexpressions (e.g., 1+1, 2*4+2*4, and (3-2*7)+(3-2*7)).

rule optimizeDoubles
replace [expression]

E [term] + E
by

2 * E
end rule

Patterns can also be parameterized by formal parameters of the rule, or other
bound variables, to specify that matching instances must contain an identical
copy of the variable’s bound value at that point in the pattern. (We saw an
example in the [replaceByValue] rule on the previous page.) A simple way to
think about TXL variables is that references to a variable always mean a copy
of its bound value, no matter what the context is.

!"#$%"&&'()*

!"#$%"&&'()* +

!,"%-*

!$%'-.%/*

!$%'-.%/*

!,"%-*

!)0-1"%* 2345

!)0-1"%* 2675

!"

!"#$%"&&'()*

+

!$%'-.%/*

!,"%-*

!)0-1"%*82345

!"#$%"&&'()*

!"#$%"&&'()* +

!,"%-*

!$%'-.%/*

!$%'-.%/*

!,"%-*

!)0-1"%* 295

!)0-1"%* 2635

"#$%$!$%$#& "'$%$#&

!"#$%"&&'()*

!,"%-*

!$%'-.%/*

!)0-1"%*82965

Fig. 6. Example application of the [resolveAdditions] rule

The figure, taken from the paper, shows a simple TXL rule and its effect on
a parse tree. In fact, a binary addition on constants is evaluated, thereby
contributing to expression simplification.

41

4.19 ErwigW12a

ErwigW12a – Data

Citation
[10]

Title
Semantics First! - Rethinking the Language Design Process

Online URL
http://web.engr.oregonstate.edu/~erwig/papers/SemanticsFirst_SLE11.pdf

Required concepts
functional programming

Provided concepts
language design

Annotation
The paper suggests a semantics-centric approach to language design as
opposed to a more syntax-based one. Haskell is used as a metalan-
guage. General language operators are employed to adapt and grow
sophisticated languages out of simple semantics concepts.

42

http://web.engr.oregonstate.edu/~erwig/papers/SemanticsFirst_SLE11.pdf

ErwigW12a – Illustration

Figure 2: Schematic illustration of the steps in the semantics-driven design process and their
relationships. The two steps “Domain Decomposition” and “Domain Modeling” taken together comprise
the Semantic Modeling part of the design process. The Syntactic Design step can be further distinguished
as Inter- and Intra-DSL Syntax Design.

Process Overview

Semantics-driven design leads from a problem domain to a domain-specific language that is described, or
implemented, by a metalanguage. The process consists of three major steps, which are illustrated in
Figure 2.

The first step decomposes the problem domain into smaller subdomains and identifies the
relationships between them. In Figure 2 we find two subdomains D1 and D2 and a relationship R between
them. This decomposition determines the semantic domain of our DSL. This step happens completely
within the problem realm. No metalanguage concepts are invoked yet.

The second step concerns the modeling of the decomposed semantic domain in the metalanguage.
Each subdomain forms the basis of (that is, is the semantic domain for) a little language called a micro
DSL. The identified relationships between subdomains are modeled as language schemas. In Figure 2 we
observe that each domain Di is modeled as a micro DSL Li and that the relationship R is modeled as
language schema S. This step takes the DSL design from the problem realm into the metalanguage realm.
In terms of Haskell, domain modeling means to define types to represent the semantics domains of
languages and type constructors to represent the semantic domains of language schemas.

These first two steps taken together comprise the semantic design part of the DSL design process. All
decisions regarding the semantics of the DSL happen in this part, which will be illustrated with the help
of an example in the next subsection on “Semantic Design”.

The third step in the design process is the design of the syntax of the DSL. This step can also be
broken down into two parts. Specifically, we can distinguish between the syntactic design of each micro
DSL and the design of syntax that spans several of these micro DSLs, leading to constructs that build
relationships between these elementary objects. We have not specifically illustrated the separate parts of

The figure is taken from a book chapter [9] that was derived from the confer-
ence paper at hand. The semantics-driven DSL design process is summarized.
The idea is that one performs domain decomposition on the semantic side;
one associates small languages with domains through domain modeling, and
one also performs syntactic design to build a full language from the small
languages.

43

4.20 CookL11

CookL11 – Data

Citation
[6]

Title
Tutorial on Online Partial Evaluation

Online URL
http://arxiv.org/abs/1109.0781v1

Required concepts
functional programming

Provided concepts
partial evaluation

Annotation
We quote from the abstract of the paper: “This paper is a short tu-
torial introduction to online partial evaluation. We show how to write
a simple online partial evaluator for a simple, pure, first-order, func-
tional programming language. In particular, we show that the partial
evaluator can be derived as a variation on a compositionally defined
interpreter. We demonstrate the use of the resulting partial evaluator
for program optimization in the context of model-driven development.”

44

http://arxiv.org/abs/1109.0781v1

CookL11 – Illustration

W. R. Cook & R. Lämmel 11

type State = Int
type Label = Char
type Transitions = [(State, [(Label, State)])]
type Accept = [State]

transitions = [(1, [(’a’, 2)]),
(2, [(’b’, 1)])]

accept = [2]

Figure 6: Types for state machines and example

run :: State -> Accept -> Transitions -> [Label] -> Bool
run current accept transitions [] = current ‘elem‘ accept
run current accept transitions (l:ls) =
case lookup l (fromJust (lookup current transitions)) of
Nothing -> False
Just next -> run next accept transitions ls

Figure 7: Haskell interpreter for state machines

run1 ls = if null ls
then False
else if head ls == ’a’

then run2 (tail ls)
else False

run2 ls = if null ls
then True
else if head ls == ’b’

then run1 (tail ls)
else False

Figure 8: Desired output from partial evaluation

The desired result from partially evaluating the state machine interpreter on the state machine in Fig. 6
is given in Fig. 8. The accept states and the transition table are no longer present as data structures—
thereby promising an aggressive optimization. However, when our partial evaluator is applied to the
program in Fig. 6 (appropriately encoded in our simple language), specialization fails to eliminate the
data structures for accept states and transition table. The problem is this expression:

lookup current transitions

W. R. Cook & R. Lämmel 11

type State = Int
type Label = Char
type Transitions = [(State, [(Label, State)])]
type Accept = [State]

transitions = [(1, [(’a’, 2)]),
(2, [(’b’, 1)])]

accept = [2]

Figure 6: Types for state machines and example

run :: State -> Accept -> Transitions -> [Label] -> Bool
run current accept transitions [] = current ‘elem‘ accept
run current accept transitions (l:ls) =
case lookup l (fromJust (lookup current transitions)) of
Nothing -> False
Just next -> run next accept transitions ls

Figure 7: Haskell interpreter for state machines

run1 ls = if null ls
then False
else if head ls == ’a’

then run2 (tail ls)
else False

run2 ls = if null ls
then True
else if head ls == ’b’

then run1 (tail ls)
else False

Figure 8: Desired output from partial evaluation

The desired result from partially evaluating the state machine interpreter on the state machine in Fig. 6
is given in Fig. 8. The accept states and the transition table are no longer present as data structures—
thereby promising an aggressive optimization. However, when our partial evaluator is applied to the
program in Fig. 6 (appropriately encoded in our simple language), specialization fails to eliminate the
data structures for accept states and transition table. The problem is this expression:

lookup current transitions

-- Haskell interpreter for state machines

-- Desired output from partial evaluation

The figure, taken from the paper, shows a general, sufficiently interpreter
function for the simulation of state machines. When provided with the ac-
tual description of the state machine, partial evaluation can speziale the
function to specific (efficient) dispatch code that essentially represents the
state machine as code.

45

4.21 HerrmannsdoerferVW11

HerrmannsdoerferVW11 – Data

Citation
[14]

Title
An Extensive Catalog of Operators for the Coupled Evolution of Meta-
models and Models

Online URL
https://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_

catalog_coupled_operators.pdf

Required concepts
metamodeling

Provided concepts
co-evolution

Annotation
The evolution of a language implies that its metamodel has to evolve.
Further, in most cases, existing instances may also need to co-evolve.
Operation-nased transformation has matured as an automated method
of carrying out metamodel/model coevolution. The present paper col-
lects a catalogue of operations on the grounds of a literature survey and
case studies; it also organizes the operations along several dimensions.

46

https://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
https://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf

HerrmannsdoerferVW11 – Illustration

Adaptation Semantics-preservation Inverse

Refactoring
rename element preserving modulo variation rename element
move property preserving modulo variation move property
extract class preserving modulo variation inline class
inline class preserving modulo variation extract class
association to class preserving modulo variation class to association
class to association preserving modulo variation association to class

Construction
introduce class introducing eliminate class
introduce property increasing modulo variation eliminate property
generalise property increasing restrict property
pull property increasing modulo variation push property
extract superclass introducing flatten hierarchy

Destruction
eliminate class eliminating introduce class
eliminate property decreasing modulo variation introduce property
restrict property decreasing generalise property
push property decreasing modulo variation pull property
flatten hierarchy eliminating extract superclass

Table 1. Semantics-preservation properties of presented transformations.

In the remainder of the paper, we will use instance-preservation properties
to identify co-adaptation scenarios. There are two cases where co-adaptation is
necessary. First, a variation ' hints a co-adaptation. Second, partial instance-
preservation might be extended to complete instance-preservation.

4 Transformational adaptation of MOF compliant
metamodels

4.1 Overview

In this section, we present a transformation library for the stepwise adapta-
tion of MOF compliant metamodels. The transformations separate semantics-
preservation properties introduced in the last section. Thereby, we can dis-
tinguish three kinds of transformations. First, we identify transformations for
semantics-preserving (by variation) refactoring. Second, introducing and increas-
ing transformations assist metamodel construction. Finally, eliminating and de-
creasing transformations allow for metamodel destruction. Table 1 groups the
transformations presented in this section by this classification. It also gives
semantics-preservation properties and inverse transformations.

We give the transformations as QVT Relations [4]. Thereby, we use its graph-
ical notation. In the remainder of this section, we discuss each transformation in
detail. We start with constructors and accordant destructors. Since most trans-
formations for refactoring rely on construction and destruction, they are pre-
sented subsequently.

The figure, taken from an earlier paper [34] by one of the authors of the
paper at hand, lists some adaptation operators and classifies them in terms
of their purpose (refactoring, construction, descruction) and their semantics
preservation properties. The paper at hand compiles a much more extensive
catalogue and engages in a richer classification.

47

4.22 MullerFBC12

MullerFBC12 – Data

Citation
[24]

Title
Modeling modeling modeling

Online URL
http://people.rennes.inria.fr/Benoit.Baudry/wp-publications/muller2010/

Required concepts
modeling, model driven engineering

Provided concepts
representation, theory of modeling

Annotation
The paper works towards a theory of modeling. There is a focus on
the representation relation that is so central to modeling (in the sense
that one thing represents another thing). In fact, different (canoni-
cal) kinds of representation relations are identified and organized in a
corresponding metamodel. This foundational work is well positioned
in the context of previous work on the foundations of modeling (and
metamodeling).

48

http://people.rennes.inria.fr/Benoit.Baudry/wp-publications/muller2010/

MullerFBC12 – Illustration

Intention

Neither things nor representations of things are built in isolation. As said by
Steinmüller, both exist for a given purpose, exhibit properties, are built for some
given stakeholders [13].

Table 2: Variations of the µ-relation, and graphical notation

Kind Intention Description Notation

different

X and Y have totally
different intentions. This
usually denotes a shift in
viewpoints.

share

X and Y share some
intention. X and Y can be
partially represented by
each other.
The representation is both
partial and extended.

sub

The intention of X is a part
of Y’s intention.
Everything which holds
for X makes sense in the
context of Y. Y can be
partially represented by X.

same

X and Y share the same
intention. They can
represent each other. This
usually denotes a shift in
linguistic conformance.

super

X covers the intention of
Y; X can represent Y, but
X has additional
properties. It is an
extended representation.

We can think about this as the intention of a thing. Intentional modeling [24]
answers questions such as who and why, not what. The intention of a thing thus
represents the reason why someone would be using that thing, in which context, and
what are the expectations vs. that thing. It should be seen as a mixture of
requirements, behavior, properties, and constraints, either satisfied or maintained by
the thing.

It is important to notice that intentional modeling must not be confused with
modeling in intension1. Intention (with a ‘t’) refers to the reason why a thing is made

1 http://www.cse.buffalo.edu/~rapaport/intensional.html

I(X) I(Y)

I(X)

I(X) I(Y)

I(X) I(Y)

I(X) I(Y)

I(Y)

The figure, taken from the paper, shows variations on the µ relation. These
variations are essentially based on differences with regard to the intention
of things. Quoting from the paper: “The intention of a thing thus repre-
sents the reason why someone would be using that thing, in which context,
and what are the expectations vs. that thing. It should be seen as a mix-
ture of requirements, behavior, properties, and constraints, either satisfied
or maintained by the thing.”

49

4.23 JezequelCDGR12

JezequelCDGR12 – Data

Citation
[16]

Title
Bridging the chasm between MDE and the world of compilation

Online URL
http://link.springer.com/article/10.1007%2Fs10270-012-0266-8

Required concepts
modelware, grammarware, compilation, MDE

Provided concepts
cross-fertilization

Annotation
The paper attempts a deeper comparison of the technological spaces [18]
of modelware (MDE) and grammarware (specifically compiler construc-
tion). We quote: “To address the growing complexity of soft- ware
systems, Model-Driven Engineering (MDE) leverages Domain Specific
Languages (DSL) to define abstract models of systems and automated
methods to process them. Mean- while, compiler technology mostly
concentrates on advanced techniques and tools for program transforma-
tion. For this, it has developed complex analyses and transformations
(from lexical and syntaxic to semantic analyses, down to platform- spe-
cific optimizations). These two communities appear today quite com-
plementary and are starting to meet again in the Software Language
Engineering (SLE) field.”

50

http://link.springer.com/article/10.1007%2Fs10270-012-0266-8

JezequelCDGR12 – Illustration
Bridging the Chasm Between MDE and the World of Compilation 7

tooling greatly help in automating many of the time consum-
ing and error prone development tasks. Finally, we observed
that metatools and generative approaches operate as creativity
boosters as they enable very fast prototyping and evaluation
of many new ideas.

3.4 Design-by-Contract

Design-by-contract [47] has been first proposed in object-
oriented languages as a way to express assume-guarantee
conditions [48] on the behavior of software by edicting pre-
cise invariants and pre and post-conditions on its execution.
It is now integral part of MDE through languages such as
the Object Constraint Language (OCL) [22], allowing to use
assume-guarantee conditions on models and model transfor-
mations as for any other software. Thus, it is possible to ex-
press conditions on the input and the output of a transforma-
tion, or of a compilation pass. These conditions can be used
to ensure a sound combination of the successive passes, driv-
ing the design space exploration with respect to the current
state of the compiled program and the desired result. Pre-
conditions can express the expected state of the input rep-
resentation of the program and post-conditions can express
the result in terms of optimization metrics (e.g., performance
cost models, code/memory size, parallelism). Such informa-
tion are generally only known by the developers of compiler
analyses and transformations and implicitly expressed by the
order of the compilation passes, making it difficult to design
a modular compiler.

4 Convergence into SLE

As seen in the two previous sections, the compiler research
community has already proposed some solutions relating to
several of the problems faced by MDE (e.g., efficient pars-
ing, platform specific knowledge capture, scalability and ef-
ficiency issues). This is also true the other way round (e.g.,
complex data representation, separation of concerns and de-
sign by contract). These solutions to shortcomings from the
two communities are summarized in Tables 1 and 2. These
tables reflect the focus of each community: compilation em-
phasizes what is the result of data transformation (to a first
approximation, more efficient code) whereas MDE concen-
trates on how data is represented (well defined domains able
to better capture specific knowledge and know-how).

Cross-fertilization of these two worlds hence leads to an
engineering of software languages that addresses both the
representation of data (i.e., the design of tool-supported soft-
ware languages) and the analysis and transformation of this
data (i.e., the implementation of supporting tools for such lan-
guages). Some recent work has already been following this
direction, by providing generic tools for language design and
implementation.

In this section we present the road already covered in the
cross-fertilization of the compilation and MDE worlds (Sub-
section 4.1) as well as the road we still have to cover (Sub-

Table 1: Solutions from compilation to MDE shortcomings

MDE shortcomings Compilation solutions
Increasing need for pars-
ing tools due to increase in
number of DSLs

Efficient parsing and
parser generators

Platform Description
Model

Capture of platform spe-
cific knowledge through
dedicated descriptions

Tool efficiency and scala-
bility

Sophisticated algorithms
and heuristics

Increasingly complex
model transformations

Know-how in sophis-
ticated algorithms de-
velopment and program
transformation paradigms

Table 2: Solutions from MDE to compilation shortcomings

Compilation shortcomings MDE solutions
IRs contain more and more
complex information,
more and more complex
IR processings,

Complex data represen-
tation and Separation of
Concerns

Maintainability Homogeneization of soft-
ware through generative
approaches

Documentation Metamodels as documen-
tation

Error-prone and time con-
suming development tasks

Automation through meta-
tools and metatooling

Ordering of the compila-
tion pass

Design-by-Contract to
limit possible choices to
meaningful choices

section 4.2). We point out two challenges we believe to be
of high interest to Software Language Engineering (SLE):
the increasing number of software languages, and the need
to bring V&V methods into SLE.

4.1 The Road Already Covered in Cross-fertilizing

The term software language refers to all the kinds of artifi-
cial languages which are implied in software systems devel-
opment, including programming and modeling languages but
also data models, DSLs or ontologies [49].

The number of such languages is constantly increas-
ing [12, chap.1], mainly due to two reasons. The first one
is the increasingly broad spectrum of domains addressed by
software systems (e.g., avionics, home automation, etc.), rais-
ing the need for languages to care for the specificities of these
domains, along with a need to make language design and im-
plementation methods accessible to non-computer scientists
(i.e., domain experts).

The second reason is the ever growing size and complex-
ity of software systems, leading to a need for breaking down
the systems into smaller understandable pieces (objects, as-
pects, etc).

Bridging the Chasm Between MDE and the World of Compilation 7

tooling greatly help in automating many of the time consum-
ing and error prone development tasks. Finally, we observed
that metatools and generative approaches operate as creativity
boosters as they enable very fast prototyping and evaluation
of many new ideas.

3.4 Design-by-Contract

Design-by-contract [47] has been first proposed in object-
oriented languages as a way to express assume-guarantee
conditions [48] on the behavior of software by edicting pre-
cise invariants and pre and post-conditions on its execution.
It is now integral part of MDE through languages such as
the Object Constraint Language (OCL) [22], allowing to use
assume-guarantee conditions on models and model transfor-
mations as for any other software. Thus, it is possible to ex-
press conditions on the input and the output of a transforma-
tion, or of a compilation pass. These conditions can be used
to ensure a sound combination of the successive passes, driv-
ing the design space exploration with respect to the current
state of the compiled program and the desired result. Pre-
conditions can express the expected state of the input rep-
resentation of the program and post-conditions can express
the result in terms of optimization metrics (e.g., performance
cost models, code/memory size, parallelism). Such informa-
tion are generally only known by the developers of compiler
analyses and transformations and implicitly expressed by the
order of the compilation passes, making it difficult to design
a modular compiler.

4 Convergence into SLE

As seen in the two previous sections, the compiler research
community has already proposed some solutions relating to
several of the problems faced by MDE (e.g., efficient pars-
ing, platform specific knowledge capture, scalability and ef-
ficiency issues). This is also true the other way round (e.g.,
complex data representation, separation of concerns and de-
sign by contract). These solutions to shortcomings from the
two communities are summarized in Tables 1 and 2. These
tables reflect the focus of each community: compilation em-
phasizes what is the result of data transformation (to a first
approximation, more efficient code) whereas MDE concen-
trates on how data is represented (well defined domains able
to better capture specific knowledge and know-how).

Cross-fertilization of these two worlds hence leads to an
engineering of software languages that addresses both the
representation of data (i.e., the design of tool-supported soft-
ware languages) and the analysis and transformation of this
data (i.e., the implementation of supporting tools for such lan-
guages). Some recent work has already been following this
direction, by providing generic tools for language design and
implementation.

In this section we present the road already covered in the
cross-fertilization of the compilation and MDE worlds (Sub-
section 4.1) as well as the road we still have to cover (Sub-

Table 1: Solutions from compilation to MDE shortcomings

MDE shortcomings Compilation solutions
Increasing need for pars-
ing tools due to increase in
number of DSLs

Efficient parsing and
parser generators

Platform Description
Model

Capture of platform spe-
cific knowledge through
dedicated descriptions

Tool efficiency and scala-
bility

Sophisticated algorithms
and heuristics

Increasingly complex
model transformations

Know-how in sophis-
ticated algorithms de-
velopment and program
transformation paradigms

Table 2: Solutions from MDE to compilation shortcomings

Compilation shortcomings MDE solutions
IRs contain more and more
complex information,
more and more complex
IR processings,

Complex data represen-
tation and Separation of
Concerns

Maintainability Homogeneization of soft-
ware through generative
approaches

Documentation Metamodels as documen-
tation

Error-prone and time con-
suming development tasks

Automation through meta-
tools and metatooling

Ordering of the compila-
tion pass

Design-by-Contract to
limit possible choices to
meaningful choices

section 4.2). We point out two challenges we believe to be
of high interest to Software Language Engineering (SLE):
the increasing number of software languages, and the need
to bring V&V methods into SLE.

4.1 The Road Already Covered in Cross-fertilizing

The term software language refers to all the kinds of artifi-
cial languages which are implied in software systems devel-
opment, including programming and modeling languages but
also data models, DSLs or ontologies [49].

The number of such languages is constantly increas-
ing [12, chap.1], mainly due to two reasons. The first one
is the increasingly broad spectrum of domains addressed by
software systems (e.g., avionics, home automation, etc.), rais-
ing the need for languages to care for the specificities of these
domains, along with a need to make language design and im-
plementation methods accessible to non-computer scientists
(i.e., domain experts).

The second reason is the ever growing size and complex-
ity of software systems, leading to a need for breaking down
the systems into smaller understandable pieces (objects, as-
pects, etc).

The figure, taken from the paper, shows how the two spaces may mutally
benefit from each other: shortcomings of one space may be addressed by
adopting solutions known in the other space.

51

4.24 VolterSBK14

VolterSBK14 – Data

Citation
[33]

Title
Towards User-Friendly Projectional Editors

Online URL
http://mbeddr.com/files/projectionalEditing-sle2014.pdf

Required concepts
parsing, IDE

Provided concepts
projectional editing

Annotation
The paper analyzes usability issues with projectional editing, but it
actually may also serve a good reference for a definition and charac-
terization of projectional editing as such. The discussion demonstrates
key characteristics of projectional editing, e.g., the combination of no-
tional styles and the use of composition techniques. We mention, in
passing, to another recent paper on projectional editing [22]

52

http://mbeddr.com/files/projectionalEditing-sle2014.pdf

VolterSBK14 – Illustration

Results We identify 14 usability issues related to e�ciently entering code (e.g.,
non-linear typing), selection and modification of code (e.g., introducing cross-tree
parentheses), and integration with existing infrastructure (e.g., version control
systems). Half of these issues can be addressed su�ciently, for instance, using code
completion or expression-tree-refactoring support. Others require language- or
notation-specific implementations, or cannot be mitigated conceptually. Results
of the survey show that developers perceive projectional editing as an e�cient
technique applicable in every-day work, while the e↵ort of getting used to it
is high. However, the survey also reveals weaknesses, such as the support for
commenting, which is currently not addressed su�ciently in MPS.

2 Background

2.1 Parsing vs. Projection

In parser-based editors (ParEs), users type characters into a text bu↵er. The
bu↵er is then parsed to check whether a sequence of characters conforms to a
grammar. The parser builds a parse tree, and ultimately, an abstract syntax tree
(AST), which contains the relevant structure of the program, but omits syntactic
details. Subsequent processing (such as linking, type checks, and transformation)
is based on the AST. Modern IDEs (re-)parse the concrete syntax while the user
edits the code, maintaining an up-to-date AST in the background that reflects the
code in the editor’s text bu↵er. However, even in this case, this AST is created
by a parser-driven transformation from the source text.

A ProjE does not rely on parsers. As a user edits a program, the AST is mod-
ified directly. A projection engine uses projection rules to create a representation
of the AST with which the user interacts, and which reflects the resulting changes.
No parser-based transformation from concrete to abstract syntax involved here.
Fig. 1 shows the di↵erence. This approach is well-known from graphical editors:
when editing a UML diagram, users do not draw pixels onto a canvas, and
a “pixel parser” then creates the AST. Rather, the editor creates an instance
of uml.Class when a user drops a class onto the canvas. A projection engine
renders the diagram by drawing a rectangle for the class. Programs are stored
using a generic tree persistence format (such as XML). As the user edits the
program, program nodes are created as instances of language concepts. This
approach can be generalized to work with any notation, including textual. A
code-completion menu lets users create instances based on a text string entered
in the editor called the alias. The concepts available for instantiation (and, thus,
the valid text strings/aliases) depend on the language definition. Importantly,
every next text string is recognized as it is entered, so there is never any parsing

Fig. 1. In ParEs (left), users see and modify the concrete syntax. A parser constructs
the AST. In ProjEs, users see and interact with the concrete syntax, but changes directly
a↵ect the AST. The concrete syntax is projected from the changing AST.

The figure, taken from the paper, illustrates the difference between parser-
based editors (ParEs) and projectional editors (ProjEs). We quote from the
paper: “In ParEs (left), users see and modify the concrete syntax. A parser
constructs the AST. In ProjEs, users see and interact with the concrete
syntax, but changes directly affect the AST. The concrete syntax is projected
from the changing AST.”

53

References

[1] Tiago L. Alves and Joost Visser. A Case Study in Grammar Engineering.
In Software Language Engineering, First International Conference, SLE
2008, Revised Selected Papers, volume 5452 of LNCS, pages 285–304.
Springer, 2009.

[2] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Madison,
Wisconsin, USA: University of Wisconsin Press, 1983.

[3] Jean Bézivin. Model Driven Engineering: An Emerging Technical Space.
In Generative and Transformational Techniques in Software Engineer-
ing, International Summer School, GTTSE 2005, Revised Papers, vol-
ume 4143 of LNCS, pages 36–64. Springer, 2006.

[4] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-
Pierre Gervais, Frédéric Jouault, Dimitrios S. Kolovos, Ivan Kurtev,
and Richard F. Paige. A Canonical Scheme for Model Composition.
In Model Driven Architecture - Foundations and Applications, Second
European Conference, ECMDA-FA 2006, Proceedings, volume 4066 of
LNCS, pages 346–360. Springer, 2006.

[5] Martin Bravenboer, Éric Tanter, and Eelco Visser. Declarative, formal,
and extensible syntax definition for AspectJ. In Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, pages 209–228.
ACM, 2006.

[6] William R. Cook and Ralf Lämmel. Tutorial on Online Partial Eval-
uation. In Proceedings IFIP Working Conference on Domain-Specific
Languages, DSL 2011, volume 66 of EPTCS, pages 168–180, 2011.

[7] James R. Cordy. Excerpts from the TXL Cookbook. In Generative and
Transformational Techniques in Software Engineering III - International
Summer School, GTTSE 2009, Revised Papers, volume 6491 of LNCS,
pages 27–91. Springer, 2011.

[8] Giorgios Economopoulos, Paul Klint, and Jurgen J. Vinju. Faster Scan-
nerless GLR Parsing. In Compiler Construction, 18th International
Conference, CC 2009, Proceedings, volume 5501 of LNCS, pages 126–
141. Springer, 2009.

54

[9] Martin Erwig and Eric Walkingshaw. Semantics-Driven DSL Design. In
Marjan Mernik, editor, Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, pages 56–80. IGI Global, 2012.

[10] Martin Erwig and Eric Walkingshaw. Semantics First! - Rethinking
the Language Design Process. In Software Language Engineering - 4th
International Conference, SLE 2011, Revised Selected Papers, volume
6940 of LNCS, pages 243–262. Springer, 2012.

[11] Jean-Luc Hainaut. The Transformational Approach to Database En-
gineering. In Generative and Transformational Techniques in Software
Engineering, International Summer School, GTTSE 2005, Revised Pa-
pers, volume 4143 of LNCS, pages 95–143. Springer, 2006.

[12] Hans-Jörg Happel and Stefan Seedorf. Applications of Ontologies in
Software Engineering. In Proceedings of International Workshop on Se-
mantic Web Enabled Software Engineering (SWESE 2006), 2006. 14
pages.

[13] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Christian Wende,
and Marcel Böhme. Generating safe template languages. In Generative
Programming and Component Engineering, 8th International Confer-
ence, GPCE 2009, Proceedings, pages 99–108. ACM, 2009.

[14] Markus Herrmannsdoerfer, Sander Vermolen, and Guido Wachsmuth.
An Extensive Catalog of Operators for the Coupled Evolution of Meta-
models and Models. In Software Language Engineering - Third Interna-
tional Conference, SLE 2010, Revised Selected Papers, volume 6563 of
LNCS, pages 163–182. Springer, 2011.

[15] John Hughes. The Design of a Pretty-printing Library. In Advanced
Functional Programming, First International Spring School on Advanced
Functional Programming Techniques, AFP 1995, Tutorial Text, volume
925 of LNCS, pages 53–96. Springer, 1995.

[16] Jean-Marc Jézéquel, Benôıt Combemale, Steven Derrien, Clement Guy,
and Sanjay V. Rajopadhye. Bridging the chasm between MDE and the
world of compilation. Software and System Modeling, 11(4):581–597,
2012.

55

[17] Kai Koskimies. Object-Orientation in Attribute Grammars. In At-
tribute Grammars, Applications and Systems, International Summer
School SAGA 1991, Proceedings, volume 545 of LNCS, pages 297–329.
Springer, 1991.

[18] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological spaces:
An initial appraisal. In Proceedings of CoopIS, DOA’2002 Federated
Conferences, Industrial track, 2002. 6 pages.

[19] Ralf Lämmel. Grammar Adaptation. In Proceedings of FME 2001
(International Symposium of Formal Methods Europe), volume 2021 of
LNCS, pages 550–570. Springer, 2001.

[20] Ralf Lämmel and Erik Meijer. Mappings Make Data Processing Go
’Round. In Generative and Transformational Techniques in Software
Engineering, International Summer School, GTTSE 2005, Revised Pa-
pers, volume 4143 of LNCS, pages 169–218. Springer, 2006.

[21] Ralf Lämmel and Erik Meijer. Revealing the X/O Impedance Mismatch
- (Changing Lead into Gold). In Datatype-Generic Programming - In-
ternational Spring School, SSDGP 2006, Revised Lectures, volume 4719
of LNCS, pages 285–367. Springer, 2007.

[22] David H. Lorenz and Boaz Rosenan. Cedalion: a language for lan-
guage oriented programming. In Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2011, part of SPLASH 2011, pages
733–752. ACM, 2011.

[23] Daniel L. Moody. The ”Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering. IEEE Trans.
Software Eng., 35(6):756–779, 2009.

[24] Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benôıt
Combemale. Modeling modeling modeling. Software and System Mod-
eling, 11(3):347–359, 2012.

[25] Paul Klint and Ralf Lämmel and Chris Verhoef. Toward an engineer-
ing discipline for grammarware. ACM Trans. Softw. Eng. Methodol.,
14(3):331–380, 2005.

56

[26] Lukas Renggli, Tudor Gı̂rba, and Oscar Nierstrasz. Embedding Lan-
guages without Breaking Tools. In ECOOP 2010 - Object-Oriented
Programming, 24th European Conference, Proceedings, volume 6183 of
LNCS, pages 380–404. Springer, 2010.

[27] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM annual conference - Volume
2, ACM ’72, pages 717–740. ACM, 1972.

[28] John C. Reynolds. Definitional Interpreters for Higher-Order Program-
ming Languages. Higher-Order and Symbolic Computation, 11(4):363–
397, 1998.

[29] Tim Sheard. Accomplishments and Research Challenges in Meta-
programming. In Semantics, Applications, and Implementation of Pro-
gram Generation, Second International Workshop, SAIG 2001, Proceed-
ings, volume 2196 of LNCS, pages 2–44. Springer, 2001.

[30] Emin Gün Sirer and Brian N. Bershad. Using production grammars in
software testing. In Proceedings of the Second Conference on Domain-
Specific Languages (DSL 1999), pages 1–13. ACM, 1999.

[31] Dave A. Thomas. The Impedance Imperative - Tuples + Objects +
Infosets = Too Much Stuff! Journal of Object Technology, 2(5):7–12,
2003.

[32] Laurence Tratt. Domain specific language implementation via compile-
time meta-programming. ACM Trans. Program. Lang. Syst., 30(6),
2008.

[33] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. To-
wards User-Friendly Projectional Editors. In Software Language Engi-
neering - 7th International Conference, SLE 2014, Proceedings, volume
8706 of LNCS, pages 41–61. Springer, 2014.

[34] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation.
In ECOOP 2007 - Object-Oriented Programming, 21st European Con-
ference, Proceedings, volume 4609 of LNCS, pages 600–624. Springer,
2007.

57

[35] Guido Wachsmuth. A Formal Way from Text to Code Templates. In
Fundamental Approaches to Software Engineering, 12th International
Conference, FASE 2009, Proceedings, volume 5503 of LNCS, pages 109–
123. Springer, 2009.

58

	Disclaimer
	Acknowledgment
	Metamodel of the bibliography
	Papers of the bibliography
	Koskimies91
	Hughes95
	Reynolds98
	SirerB99
	Sheard01
	KurtevBA02
	Thomas03
	Hainaut06
	HappelS06
	Bezivin06
	BezivinBFGJKKP06
	BravenboerTV06
	AlvesV09
	Wachsmuth09
	Moody09
	RenggliGN10
	HeidenreichJSWB09
	Cordy11
	ErwigW12a
	CookL11
	HerrmannsdoerferVW11
	MullerFBC12
	JezequelCDGR12
	VolterSBK14

