Yet another annotated SLEBOK bibliography

Ralt Lammel
Version 0.003 (2 November 2014)

Abstract

Software Language Engineering (SLE) is a particular view on Soft-
ware Engineering (SE), which pays specific attention to the many
software languages that are used in software development. These are
not just programming languages, but also modeling languages, query
and transformation languages, schema languages—many of them to
be considered domain-specific languages. SLE is concerned with de-
sign, implementation, testing, deployment, and evolution of software
languages as well as language-based software components.

The purpose of this annotated bibliography is to contribute to the
SLE body of knowledge (SLEBOK). The bibliography collects a man-
ageable set of papers that cover many principles and practilities of SLE
in an accessible manner. The intension is to favor more fundamental,
general papers over specific, highly technical papers. The selection
is otherwise not very systematic. The SLE and GTTSE venues were
assumed to provide key papers. Yet other venues, such as OOPSLA
(SPLASH), ECOOP, and CC as well as special issues on the SLE
topic or its vicinity were also considered. Several papers were simply
included based on the author’s long-term exposition to SLE school of
thought. Moreover, several SLE researchers have provided advice on
what additional papers to include.

The bibliography could be useful in teaching. In fact, the selection
of papers is largely based on what I have covered or wish or could
imagine to cover in a relatively advanced SLE course.

Contents

1 Disclaimer 3
2 Acknowledgment 3
3 Metamodel of the bibliography 4
4 Papers of the bibliography 5
4.1 Koskimies91 6
4.2 Hughes95 8
4.3 Reynolds98 10
4.4 SirerB99 e 12
4.5 Sheard01 14
4.6 KurtevBAO2 e 16
4.7 Thomas03 e 18
4.8 Hainaut06 e 20
4.9 HappelS06 22
4.10 Bezivin06 e e e e 24
4.11 BezivinBFGJKKPO6 26
4.12 BravenboerTVO06 28
4.13 AlvesV09 e 30
4.14 Wachsmuth09 32
4.15 Moody09 34
4.16 RenggliGN10 36
4.17 HeidenreichJSWB09 38
418 Cordyll o e 40
4.19 ErwigWi2a o oo 42
4.20 CookL11 e 44
4.21 HerrmannsdoerferVWI11 46
4.22 MullerFBC12 e 48
4.23 Jezequel CDGRI12 o 50
4.24 VolterSBK14« o e 52

1 Disclaimer

This is unfinished work.

2 Acknowledgment

The following people have made suggestions for inclusion into the bibliog-
raphy or given more general advice on the project: Anya Helene Bagge,
David Lorenz, Richard Paige, Andrei Varanovich, Guido Wachsmuth, An-
dreas Winter, Vadim Zaytsev.

3 Metamodel of the bibliography

The document is generated from a model. The metamodel is given here
informally in terms of how the document looks like. There is one page per
entry with data as follows:

Key Descriptor of the paper.

Title Title of the paper.

Citation Bibtex citation for the paper.
Online URL Public access where possible.
Required concepts Assumed background.
Provided concepts Knowledge areas served.
Annotation Description of the paper.

Figure An illustration.

The illustration consists of an annotated figure, which is taken either
directly from the paper or assembled. Annotations of papers and their illus-
trations may also refer to works which are not part of the selection.

4 Papers of the bibliography

4.1 Koskimies91
Koskimies91 — Data

Citation

[17]

Title
Object-Orientation in Attribute Grammars

Online URL
http: //link. springer. Com/chapter/lo .1007%2F3-540-54572-7_11

Required concepts
context-free grammar, attribute grammar, object orientation

Provided concepts
object-oriented context-free grammar, object-oriented context-free gram-
mar

Annotation
The attribute grammar formalism is married with the object-oriented
paradigm. Arguably, a side effect of this marriage is that the underlying
context-free grammar formalism is also married with object orientation,
which is interesting in so far that this (early) explanation of the cor-
respondence is exploited nowadays in diverse mapping tools and code
generators.

http://link.springer.com/chapter/10.1007%2F3-540-54572-7_11

Koskimies91 — Illustration

Expression -> Expression AddOp Term | Term.

- Term -> Term MulOp Factor | Factor
. Factor -> number | '(' Expression ')’
AddOp -> '+'| !
‘MulOp ->"*'| /

: From conventional to
i (strongly) Sl-structured
i context-free grammar

Expression -> Sum | Term

Sum -> Expression AddOp Term
Term -> Multiplication | Factor
Multiplication -> Term MulOp Factor
Factor -> Constant | SubExpr
Constant -> number

SubExpr -> ‘(" Expression)’
AddOp -> Plus | Minus

MulOp -> Times | Div

Plus -> '+

Minus -> '

Times -> "*'

Div -> '/

The figure shows two grammars for the same expression language taken from
the paper. The first grammar is a conventional context-free grammar in terms
of style, whereas the second grammar is restructured to be in an explicitly
OO-enabled form. That is, an object model with single inheritance could be
derived from the second grammar directly.

4.2 Hughes95
Hughes95 — Data

Citation

[15]

Title
The Design of a Pretty-printing Library

Online URL
http://link.springer.com/chapter/10.1007%2F3-540-59451-5_3

Required concepts
functional programming

Provided concepts
pretty printing, combinator library

Annotation
Pretty printing is clearly an important form of language processing.
This is not the first paper on a declarative and compositional approach
to pretty printing; it stands out though with a very accessible presen-
tation explaining the design and implementation of a (Haskell-based)
combinator library for pretty printing. This library can be viewed as
providing a simple embedded language for pretty printing.

http://link.springer.com/chapter/10.1007%2F3-540-59451-5_3

Hughes95 — Illustration

%Node “foo” (Node “baz” Leaf Leaf) (Node “foobaz” LeafLeaf)%

‘Ugly’ term

\ ﬁNode “foo” (Node “baz” Leaf Leaf)

% (Node “foobaz” Leaf Leaf)

pp :: Tree — Doc

pp Leaf = text “Leaf”
pp (Node s 1 r) = text (“Node " ++s) <> sep [pp’ I, pp’ r]
pp’ Leaf = pp Leaf

pp’t =text (" <>ppt<> ")

[Pretty printing function]

The figure shows snippets (two Haskell terms and one Haskell function) taken
from the paper. The figure illustrates pretty printing for binary trees with
a string as info at each fork (i.e., non-leaf) node. The pretty-printed term
uses line breaks and indentation for prettiness. The pretty printing function
maps trees to documents; see the reference to the Doc type. Pretty printer
combinators are used; see ‘sep’ for example.

4.3 Reynolds98
Reynolds98 — Data

Citation

28]

Title
Definitional Interpreters for Higher-Order Programming Languages

Online URL
http://cs.au.dk/~hosc/local/HOSC-11-4-pp363-397.pdf

Note
This paper originally appeared as [27].

Required concepts
semantics

Provided concepts
interpreter, continuation

Annotation

The paper discusses the use of interpreters as definitions of languages.
There are the notions of defining and defined language (similar to what
is also called elsewhere meta and object language). The paper analyzes
possible differences between the interpreter-based definition and the
formal or informal definition. The paper also discusses different styles
of interpreter definition, e.g., a less insightful meta-circular interpreter
for a higher-order language versus a first-order interpreter for the same
defined language. The issue of application-order dependence is analysed
and addressed with continuations.

10

http://cs.au.dk/~hosc/local/HOSC-11-4-pp363-397.pdf

Reynolds98 — Illustration

eval = \(r,e).
(const?(r) — evcon(r),
var?(r) — e(r),
appl?(r) — (eval(opr(r),e)) (eval(opnd(r),e)),
lambda?(r) — evlambda(r,e),
cond?(r) — if eval(prem(r), e)
then eval(conc(r), e) else eval(altr(r), e),
letrec?(r) — letrec ¢/ =
Az if 2 = dvar(r) then eviambda(dexp(r), ¢) else e(z)
in eval(body(r), ¢'))
evlambda = \((, e). Aa. eval(body((), ext(fp({), a, €))

ext = \(z,a,e). \z. if © = z then a else e(x).

The figure, taken from the paper, shows a meta-circular interpreter for (in)
a simple functional language with lambdas, constants, conditionals, and re-
cursive let.

11

4.4 SirerB99
SirerB99 — Data

Citation

[30]

Title
Using production grammars in software testing

Online URL
http://www.cs.cornell.edu/people/egs/papers/kimera-ds199.pdf

Required concepts
software engineering

Provided concepts
grammar-based testing

Annotation

The paper shows how grammar-based test-data generation and an ac-
companying methodology of testing may be highly effective and scal-
able for testing language-based software, in fact, the Java Virtual Ma-
chine. Previous publications on grammar-based testing mainly focused
on compiler testing. The paper relies on a domain-specific language
lava for specifying grammars from which to generate test data — byte-
code, in this case. The generated test data is used for stress tesing the
JVM verifier and also for comparative tesing of different verifiers.

12

http://www.cs.cornell.edu/people/egs/papers/kimera-dsl99.pdf

SirerB99 — Illustration

()

Grammar

Code Generator Generator

W Seed

Test 1 Test 2 Test N
—] .
tl]m]]]]:‘ e %

I ARNNNNNT] ceee ot
(RN RRNN I RRRRRNNN]

L ==

Virtual Machine

. J

The figure, taken from the paper, carries the following caption (in the paper):
The structure of the test generation process. A code-generator-generator
parses a production grammar, generates a code-generator, which in turn
probabilistically generates test cases based on a seed.

13

4.5 Sheard01
Sheard01 — Data

Citation

[29]

Title
Accomplishments and Research Challenges in Meta-programming

Online URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6848

Required concepts
functional programming, metaprogramming

Provided concepts
taxonomy of metaprogramming, program representation, quasi-quotation,
intensional analysis, staged computation, MetaML

Annotation
The paper provides a (possibly outdated) overview over meta-programming
with focus on the functional approach towards program representation,
code generation, and intensional code analysis. The paper aims to pro-
vide a taxonomy of metaprogramming and it discusses problems in
metaprogramming in a systematic and illustrative manner. MetaML
is shortly introduced as a particular metaprogramming language. The
paper brings up research challenges related to, e.g., dependent typing.

14

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6848

Sheard01 — Illustration

-| fun power_gen m
let fun f n x = if n = O then <1> else <"x * “(f (n-1) x)>
in <let fun power x = “(f m <x>) in power end> end;

val power_gen = fn : int -> <int -> int>
-| val power_code = power_gen 3;

The figure, taken from the paper, shows the MetaML-based definition of a
staged exponentiation function. The power_gen function describes the code
generation for the n-th power. The power_code value holds the code for the
3rd power. The power_fun function is the function for said code, which we
can ultimately apply.

15

4.6 KurtevBAOQO2
KurtevBA0O2 — Data

Citation

[18]

Title
Technological spaces: An initial appraisal

Online URL
http://eprints.eemcs.utwente.nl/10206/01/0363TechnologicalSpaces.pdf

Required concepts
model driven engineering

Provided concepts
technological space

Annotation

As suggested by the title, this is the record of the introduction of the
technological space notion. Several spaces are identified and discussed:
abstract /concrete syntaxes, database management systems, XML, on-
tology engineering, and MDA. The megamodel underlying the spaces is
discussed and instantiated for some spaces. The need for and the role
of bridges between the spaces is explained. See [3] for another, more
recent description of technological spaces.

16

http://eprints.eemcs.utwente.nl/10206/01/0363TechnologicalSpaces.pdf

KurtevBAQ2 — Illustration

Grammar

Abstract
Concrete

Syntaxes

Program

Meta-model

Schema

Document

Top-level
Ontology

Ontology
engineering

Ontology

The figure, taken from the paper, shows five technological spaces and bridges

between them.

17

4.7 Thomas03
Thomas03 — Data

Citation

[31]

Title
The Impedance Imperative, Tuples + Objects 4+ Infosets = Too Much
Stuff!

Online URL
http://www.jot.fm/issues/issue_2003_09/columni.pdf

Required concepts
data programming

Provided concepts
impedance mismatch

Annotation

The paper (a column, in fact) takes a critical look at data programming—
specifically in the sense of CRUD (Create, Read, Update, Delete). The
discussion covers indexed files, SQL and database access APIs, object-
oriented databases, modern wrapping/mapping-based approaches (e.g.,
object/relational mapping). The column identifies various problems
with data programming: diversity of data modeling and CRUD pro-
gramming options and the practical need to mix them, difficulties of
integrating different type systems and data query/transformation lan-
guages, proprietary developments, performance issues, and complexity
of support technologies. The discussion also briefly touches some con-
tenders that may address some of the problems. The paper may be a
good starting point to look for technical publications on the topic.

18

http://www.jot.fm/issues/issue_2003_09/column1.pdf

Thomas03 — Illustration

Bermuda

Florida

Bermuda
Triangle

Gulf of Mexico

Tropic of Cancer

Puerto Rico

Caribbean Sea

http://en.wikipedia.org/wiki/File:Bermuda_Triangle.png

The figure, taken from Wikipedia, obviously shows the Bermuda triangle.
While working with Erik Meijer on [20, 21], I picked up his intuition that
data programming (because of the impedance mismatch) is essentially like
operating in the Bermuda triangle. That is, data may disappear, if we al-
low this exaggeration. Just replace Bermuda, Florida, and Puerto Rico by
XML, relational databases, and objects. (The idea of a triangle is an under-
statement because there are, of course, more competitors, e.g., Cobol and
ontologies.)

19

4.8 Haitnaut06
Hainaut06 — Data

Citation

[11]

Title
The Transformational Approach to Database Engineering

Online URL
http://link.springer.com/chapter/10.1007%2F11877028_4

Required concepts
entity-relationship model, relational database

Provided concepts
schema normalization, logical design, schema integration, view deriva-
tion, schema equivalence, data conversion, data reverse engineering,
schema optimization, data access wapper generation

Annotation
The paper describes fundamental and practical aspects of database
transformation techniques. In particular, the notion of transformation
is developed in combination with the correctness and reversibility prop-
erties.

20

http://link.springer.com/chapter/10.1007%2F11877028_4

Hainaut06 — Illustration

P = source schema Q = target schema
A A
Al T5 Al
A2 = QO-1 —{A2 —0-1@
excl:s.C
35 5 L= 1-1 rB 1-1
c T5' —L
B B c
B1 C1 B1 ci
B2 C2 B2 c2

The figure, taken from the paper, shows a particular transformation rule.
Quoting from the paper “Transforming an is-a hierarchy into one-to-one rela-
tionship types and conversely. The exclusion constraint (excl:s.C,r.B) states
that an A entity cannot be simultaneously linked to a B entity and a C entity.
It derives from the disjoint property (D) of the subtypes”

21

4.9 HappelS06
HappelS06 — Data

Citation

[12]
Title

Applications of Ontologies in Software Engineering

Online URL
https://km.aifb.kit.edu/ws/swese2006/final/happel_full.pdf

Required concepts
software engineering, ontology

Provided concepts
analysis, design, requirements engineering, component reuse, imple-
mentation, modeling, documentation, semantic middleware, semantic
web service, maintenance, testing

Annotation
This paper takes an inventory of applications (usage categories) of on-
tologies in software engineering. It is rich in pointing out the relevance
and potential of ontologies in various contexts (e.g., lifecyle phases) in
software engineering.

22

https://km.aifb.kit.edu/ws/swese2006/final/happel_full.pdf

HappelS06 — Illustration

()
| -
g ODD OBA
= (e.g. MDA) (e.g. Business-Rules)
g 2
< P
§e,
o)
E a
>
o)
3o N
£ 3
© 35 OED OEA
"U!:'J (e.g. Knowledge (e.g. Semantic Web
] Management) Services)
—
£
dev-time run-time

The figure is taken from the paper. Different roles of ontologies in the
context of software engineering are identified along two axes. Legend of
acronyms used: Ontology-driven development (ODD), Ontology-enabled de-
velopment (OED), Ontology-based architectures (OBA), Ontology-enabled
architectures (OEA).

23

4.10 Beziwin06
Bezivin06 — Data

Citation

[3]

Title
Model Driven Engineering: An Emerging Technical Space

Online URL
http://link.springer.com/chapter/10.1007%2F11877028_2

Required concepts
software development

Provided concepts
technological space, model driven engineering, model transformation,
metamodeling

Annotation
The paper describes the basic principles and practical characteristics of
model driven engineering (MDE). The technological space notion (see
also [18]) is used to organize much of the description. In particular,
MDE is also compared to other technological spaces. The key notions
of metamodeling and model transformation are illustrated. Various
technologies and standards are placed in context, e.g., EMF and ATL.

24

http://link.springer.com/chapter/10.1007%2F11877028_2

Bezivin06 — Illustration

Language

MetaModel q engineering

vy

conformantTo

meta-meta-model

Confo rmsTo conformantTe The
modelling
M ~ meta-model | wor |d
[k ‘IdII M D E conformantTo

isRepresentedBy. My | et
; ; representedBy
The

| System Ontology
M system r-eal
engineering ° I——| world

The figure, taken from the conclusion of the paper, on the left, highlights two
important relations involved in MDE-—the ‘isRepresentedBy’ relation that
some thing (perhaps a model) is represented by a model and the ‘conformsTo’
relation related to metamodeling. On the right, the progression from real-
world entities, through models and metamodels, up to metametamodels is
megamodeled.

25

4.11 BezivinBFGJKKPO0O6
BezivinBFGJKKPO0O6 — Data

Citation

Title
A Canonical Scheme for Model Composition

Online URL
http://ssei.pbworks.com/f/Bezivin.A+Canonical+Scheme+for+Model+Composition.
pdf

Required concepts
metamodeling

Provided concepts
model composition, model weaving, Glue Generator Tool, Epsilon Merg-
ing Language, Atlas Model Weaver

Annotation
The paper surveys different methods and tools for model composition.
It also analyzes composition scenarios and assesses them, for example,
in terms of degree of feasible automation. Further, general requirements
for model composition tools are postulated and the degree of tool sup-
port is considered for existing technologies (at the time of writing).

26

http://ssei.pbworks.com/f/Bezivin.A+Canonical+Scheme+for+Model+Composition.pdf
http://ssei.pbworks.com/f/Bezivin.A+Canonical+Scheme+for+Model+Composition.pdf

BezivinBFGJKKPQ06 — Illustration

confrmsTo

L efthd hi

confomsTo

Metametabdodel

T-:u:-nf-:-rrnET-:-

bt bt

o

-:-nf-:-rrnET-:-T

' b

confomisTo

Rt ig kbl b

The figure, taken from the paper’ section on the Atlas Model Weaver, shows
the schema (say, megamodel) of models and metamodels involved in a weav-
ing (i.e., composition) situation together with the required conformance re-

lationships.

27

4.12 BravenboerTVO06
BravenboerT V06 — Data

Citation

[5]

Title
Declarative, formal, and extensible syntax definition for AspectJ

Online URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.7867

Required concepts
parsing, AspectJ

Provided concepts
scannerless parsing, Generalized LR parsing

Annotation
The paper is a showcase of using generalized LR parsing in the imple-
mentation of frontends. While the underlying theory has been pub-
lished elsewhere, the paper is nevertheless suitable for studying the
basics of the method. AspectJ is picked as the target of a case study
because parsing AspectJ challenges more convential parsing techniques.
We mention, in passing, another recent paper on generalized LR pars-

ing [3].

28

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.7867

BravenboerTV06 — Illustration

class
aspect,class

class pointcut

In the figure, taken from the paper, the non-trivial issue of state maintenance
in a scanner-based frontend for AspectJ is described at a higher level of
abstraction. Depending on the context of parsing (Java, AspectJ, Pointcut),
the scanner needs to work differently. In scannerless implementation, such
extra effort is not needed.

29

4.13 AlvesV09
AlvesV09 — Data

Citation

[1]

Title
A Case Study in Grammar Engineering

Online URL
http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/grammar-eng.

pdf

Required concepts
software engineering, parsing, metrics

Provided concepts
grammar engineering, grammar recovery, grammar metrics, grammar
testing, grammar versioning

Annotation

The ‘Grammarware Agenda’ [25] properly established the terms gram-
mar engineering (and grammarware engineering). The present paper
presents a study that involves several areas of grammarware engineer-
ing. The study is concerned with the development of a VDM-SL gram-
mar for actual parsing from its ISO standard language reference. The
study involves grammar transformation (recovery), testing, metrics,
and version management.

30

http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/grammar-eng.pdf
http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/grammar-eng.pdf

Alves V09 — Illustration

200

- == VAR
150 v — —HAL (K)
CLEV

100 =

50

L e e e
12 3 456 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

The figure, taken from the paper, shows the development of different gram-
mar metrics over time. The timeline is defined by the commits of the gram-
mar, as it was changed over time to complete the recovery process and to
otherwise develop the parser. Test coverage also drives this process.

31

4.14 Wachsmuth09
Wachsmuth09 — Data

Citation

[35]

Title
A Formal Way from Text to Code Templates

Online URL
http: //link. springer. Com/chapter/lo .1007%2F978-3-642-00593-0_8

Required concepts
metamodeling, formal semantics

Provided concepts
template instantiation

Annotation

The paper addresses the problem of unsafe template instantiation; see
[13] for a description of the problem. Both papers share the overall
line of attack: adaptation of a language’s metamodel (syntax) so that
template-instantiation concepts are made available in a systematic way.
The present paper stands out by deploying techniques of programming
language theory (operational semantics and type systems) as well as
grammar adaptation based on appropriate transformation operators in
the tradition of [19)].

32

http://link.springer.com/chapter/10.1007%2F978-3-642-00593-0_8

Wachsmuth09 — Illustration

introduce texpr ttype tun tn

introduce targ = ttype tun

foreach nt : N
include nt = < expand tn texpr™ >
include nt = <if texpr* > nt <else> nt <Kendif >
include tmpl = < define |nt| tn targ™ > nt <enddef >
include tstmt = nt
include dn = |nt|

endfor
foreach nt : M
fold nty = nt

include nty = < texpr>
include tstmt = ntys
include dn = |[nt]
endfor
foreach nt : L
fold nty = nt
include nt; = <for tvn in texpr > nt < endfor>>
include tstmt = ntr,
endfor
introduce tcoll = tmpl*

The figure, taken from the paper, shows a transformation script which loops
over symbols of the underlying language grammar and includes additional
productions in a systematic manner so that concepts for template instantia-
tion are made available.

33

4.15 Moody09
Moody09 — Data

Citation

[23]

Title
The ”Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering

Online URL
http://www.dama.org.au/wp-content/uploads/2013/02/IEEE-TSE-35-5-November-December—-2009-The
L.Moody_.pdf

Required concepts
visual language

Provided concepts

Annotation

We quote from the paper: “This paper defines a set of principles for
designing cognitively effective visual notations: ones that are optimised
for human understanding and problem solving. Together these form
a design theory, called the Physics of Notations as it focuses on the
physical (perceptual) properties of notations rather than their logical
(semantic) properties. The principles were synthesised from theory and
empirical evidence from a wide range of fields and rest on an explicit
theory of how visual notations communicate. They can be used to
evaluate, compare, and improve existing visual notations as well as
to construct new ones. The paper identifies serious design flaws in
some of the leading SE notations together with practical suggestions
for improving them. It also showcases some examples of visual notation
design excellence from SE and other fields.”

34

http://www.dama.org.au/wp-content/uploads/2013/02/IEEE-TSE-35-5-November-December-2009-The-Physics-of-Notations-D.L.Moody_.pdf
http://www.dama.org.au/wp-content/uploads/2013/02/IEEE-TSE-35-5-November-December-2009-The-Physics-of-Notations-D.L.Moody_.pdf

Moody09 — Illustration

PLANAR

VARIABLES

Horizontal Shape Size Colour

Position Q ° . @

) OUA 5O

Vertical Brightness Orientation Texture

"0 080 [£ 000
oot () it
D -

In the figure, taken from the paper and based on seminal work [2], different
visual variables are listed. These variables can thought of as defining a set
of primitives, we quote from the paper: “a visual alphabet—for constructing
visual notations: graphical symbols can be constructed by specifying par-
ticular values for visual variables (e.g., shape = rectangle, colour = green).
Notation designers can create an unlimited number of graphical symbols by
combining the variables together in different ways.”

35

4.16 RenggliGN10
RenggliGN10 — Data

Citation

[20]

Title
Embedding Languages without Breaking Tools

Online URL
http://scg.unibe.ch/archive/papers/RenglOaEmbeddinglanguages.pdf

Required concepts
Smalltalk

Provided concepts
embedded language

Annotation

The paper describes an embedding approach for the implementation
of domain-specific languages (DSLs). Specifically, DSLs are modeled
as language extensions of the underlying host language. The approach
addresses the challenge of providing the language extensions in a man-
ner that they integrate well with the development tools of the host
language. The paper presents the extensible system Helvetia which
intercepts the compilation pipeline of the Smalltalk host language to
seamlessly integrate language extensions. See [32] for another extensive
discussion of language embedding.

36

http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

RenggliGN10 — Illustration

----- Pidgin
------- Creole Rules
= = = Argot
..°"<parse> <transfor.1r'1>‘ <attribute>
. - s
IR o 1
" l‘ ., I “
l' ‘\ . ‘.
Source Smalltalk « Semantic Executable
Code =~ Parser Anaysig - Code

Traditional Smalltalk Compiler

The figure, taken from the paper, shows different interception options for
realizing embedded languages in the Smalltalk-based Helvetia framework. A
pidgin does not require a new parser, but the code needs to be transformed
before the semantic analysis. A creole also requires a designated parser. An
argot only affects the backend.

37

4.17 HeidenreichJSWB09
HeidenreichJSWB09 — Data

Citation

[13]

Title
Generating Safe Template Languages

Online URL
https://www.st.cs.uni-saarland.de/~boehme/paper/GPCE09.pdf

Required concepts
metamodeling

Provided concepts
template instantiation

Annotation

The paper addresses the problem of unsafe template instantiation. Such
instantiation can be unsafe in the sense that string-level operations are
performed at run-time and thus it is not obvious or known at design
time whether the described instantiation will actually lead to syntac-
tically correct output eventually. The proposed approach involves the
addition of generic template-instantiation concepts to existing language
definitions in a generic manner. Thus, template instantiation would
only be described in terms of metamodel instantiation, thereby imply-
ing syntactically correctness. Similar problems are present in program-
ming languages with a macro system.

38

https://www.st.cs.uni-saarland.de/~boehme/paper/GPCE09.pdf

HeidenreichJSWB09 — Illustration

H Template H TemplateConcept expression |5 _OCLExpression
& 1>
I I I |
H Placeholder H If H IfElse H ForEach

= variable : EString

The figure, taken from the paper, shows the metamodel for template-instantiation
concepts, e.g., a conditional and a loop form. The idea is that these concepts
can be specialized for the syntactic categories of the language that is to be
extended with template concepts. Whether or not a conditional or a loop is
allowed in a certain position also depends on the cardinalities of the model
element in the position. There is a generic algorithm to weave the template
support in a given metamodel for a language.

39

4.18 Cordyl1
Cordy11 — Data

Citation

[7]

Title
Excerpts from the TXL Cookbook

Online URL
http://cs.queensu.ca/~cordy/Papers/JC_TXLCookbook_LNCS.pdf

Required concepts
software engineering

Provided concepts
source-code analysis, source-code transformation

Annotation

The paper captures some reusable knowledge of implementating soft-
ware components for source-code analysis and transformation. While
the paper is focused on TXL as the underlying transformation system,
the overall approach to knowledge representation would also make sense
for other systems. The following classes of problems are considered:
parsing, restructuring, optimization, static analysis, and interpretation.
The solutions to the problems are described in terms of ‘paradigms’
such as ‘Use sequences, not recursions’; ‘Preserve comments in output’,
‘Generate unique identifiers’.

40

http://cs.queensu.ca/~cordy/Papers/JC_TXLCookbook_LNCS.pdf

Cordy11 — Illustration

[expression]
[expression]
[expression] + [term]
rule resolveAdditions [term]
replace [expression]
N1[number] + N2[number] .
by [term] [primary]
N1 [+ N2] [primary]
end rule
[primary] N2: [number] (v2)

[number] (v1+v2)

N1: [number] (v1)
The figure, taken from the paper, shows a simple TXL rule and its effect on

a parse tree. In fact, a binary addition on constants is evaluated, thereby
contributing to expression simplification.

41

4.19 ErwigWi2a
ErwigW12a — Data

Citation

[10]

Title
Semantics First! - Rethinking the Language Design Process

Online URL
http://web.engr.oregonstate.edu/~erwig/papers/SemanticsFirst_SLE11.pdf

Required concepts
functional programming

Provided concepts
language design

Annotation
The paper suggests a semantics-centric approach to language design as
opposed to a more syntax-based one. Haskell is used as a metalan-
guage. General language operators are employed to adapt and grow
sophisticated languages out of simple semantics concepts.

42

http://web.engr.oregonstate.edu/~erwig/papers/SemanticsFirst_SLE11.pdf

ErwigW12a — Illustration

Semantics-Driven

DSL Design
Domain
Decomposition

Syntactic
Design

Domain

Modeling S @ Domain

O Relationship
U Language
Domain Metalanguage

Realm Realm Q Language Schema

The figure is taken from a book chapter [9] that was derived from the confer-
ence paper at hand. The semantics-driven DSL design process is summarized.
The idea is that one performs domain decomposition on the semantic side;
one associates small languages with domains through domain modeling, and
one also performs syntactic design to build a full language from the small
languages.

43

4.20 CookL11
CookL11 — Data

Citation

[6]

Title
Tutorial on Online Partial Evaluation

Online URL
http://arxiv.org/abs/1109.0781v1

Required concepts
functional programming

Provided concepts
partial evaluation

Annotation
We quote from the abstract of the paper: “This paper is a short tu-
torial introduction to online partial evaluation. We show how to write
a simple online partial evaluator for a simple, pure, first-order, func-
tional programming language. In particular, we show that the partial
evaluator can be derived as a variation on a compositionally defined
interpreter. We demonstrate the use of the resulting partial evaluator
for program optimization in the context of model-driven development.”

44

http://arxiv.org/abs/1109.0781v1

CookL11 — Illustration

-- Haskell interpreter for state machines

run :: State -> Accept -> Transitions -> [Label] -> Bool
run current accept transitions [] = current ‘elem’ accept
run current accept transitions (l:1ls) =
case lookup 1 (fromJust (lookup current transitions)) of
Nothing -> False
Just next -> run next accept transitions 1s

-- Desired output from partial evaluation

runl 1s = if null 1s
then False
else if head 1s == ’'a
then run2 (tail 1s)
else False

’ ’

run2 1ls = if null 1s

then True

else if head 1s == 'b’
then runl (tail 1s)
else False

The figure, taken from the paper, shows a general, sufficiently interpreter
function for the simulation of state machines. When provided with the ac-
tual description of the state machine, partial evaluation can speziale the
function to specific (efficient) dispatch code that essentially represents the
state machine as code.

45

4.21 HerrmannsdoerferVW11
HerrmannsdoerferVW11 — Data

Citation

[14]

Title
An Extensive Catalog of Operators for the Coupled Evolution of Meta-
models and Models

Online URL
https://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_
catalog_coupled_operators.pdf

Required concepts
metamodeling

Provided concepts
co-evolution

Annotation
The evolution of a language implies that its metamodel has to evolve.
Further, in most cases, existing instances may also need to co-evolve.
Operation-nased transformation has matured as an automated method
of carrying out metamodel/model coevolution. The present paper col-
lects a catalogue of operations on the grounds of a literature survey and
case studies; it also organizes the operations along several dimensions.

46

https://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
https://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf

HerrmannsdoerferVW11 — Illustration

Adaptation

Semantics-preservation

Inverse

Refactoring
rename element
move property
extract class
inline class
association to class
class to association

preserving modulo variation
preserving modulo variation
preserving modulo variation
preserving modulo variation
preserving modulo variation
preserving modulo variation

rename element
move property
inline class

extract class

class to association
association to class

Construction
introduce class
introduce property
generalise property
pull property
extract superclass

introducing

increasing modulo variation
increasing

increasing modulo variation
introducing

eliminate class
eliminate property
restrict property
push property
flatten hierarchy

Destruction
eliminate class
eliminate property
restrict property
push property
flatten hierarchy

The figure, taken from an earlier paper |

eliminating
decreasing modulo variation
decreasing
decreasing modulo variation
eliminating

introduce class
introduce property
generalise property
pull property
extract superclass

] by one of the authors of the

paper at hand, lists some adaptation operators and classifies them in terms
of their purpose (refactoring, construction, descruction) and their semantics
preservation properties. The paper at hand compiles a much more extensive
catalogue and engages in a richer classification.

47

4.22 MullerFBC12
MullerFBC12 — Data

Citation

[24]

Title
Modeling modeling modeling

Online URL
http://people.rennes.inria.fr/Benoit.Baudry/wp-publications/muller2010/

Required concepts
modeling, model driven engineering

Provided concepts
representation, theory of modeling

Annotation

The paper works towards a theory of modeling. There is a focus on
the representation relation that is so central to modeling (in the sense
that one thing represents another thing). In fact, different (canoni-
cal) kinds of representation relations are identified and organized in a
corresponding metamodel. This foundational work is well positioned
in the context of previous work on the foundations of modeling (and
metamodeling).

48

http://people.rennes.inria.fr/Benoit.Baudry/wp-publications/muller2010/

MullerFBC12 — Illustration

Kind

Intention

Description

Notation

different

> D

1(X) I(Y)

X and Y have totally
different intentions. This
usually denotes a shift in
viewpoints.

share

LR

I(X) I(Y)

X and Y share some
intention. X and Y can be
partially represented by
each other.

The representation is both
partial and extended.

X ~o~ Y

sub

1(X))

The intention of X is a part
of Y’s intention.
Everything which holds
for X makes sense in the
context of Y. Y can be
partially represented by X.

same

3

1(X))

X and Y share the same
intention. They can
represent each other. This
usually denotes a shift in
linguistic conformance.

X=—Y

super

=0

1(X) I(Y)

X covers the intention of
Y; X can represent Y, but
X has additional
properties. It is an
extended representation.

X — Y

The figure, taken from the paper, shows variations on the p relation. These
variations are essentially based on differences with regard to the intention
“The intention of a thing thus repre-
sents the reason why someone would be using that thing, in which context,
and what are the expectations vs. that thing. It should be seen as a mix-
ture of requirements, behavior, properties, and constraints, either satisfied
or maintained by the thing.”

of things. Quoting from the paper:

49

4.23 JezequelCDGR12
Jezequel CDGR12 — Data

Citation

[16]

Title
Bridging the chasm between MDE and the world of compilation

Online URL
http: //link. springer. com/article/10.1007%2Fs10270-012-0266-8

Required concepts
modelware, grammarware, compilation, MDE

Provided concepts
cross-fertilization

Annotation

The paper attempts a deeper comparison of the technological spaces [1¥]
of modelware (MDE) and grammarware (specifically compiler construc-
tion). We quote: “To address the growing complexity of soft- ware
systems, Model-Driven Engineering (MDE) leverages Domain Specific
Languages (DSL) to define abstract models of systems and automated
methods to process them. Mean- while, compiler technology mostly
concentrates on advanced techniques and tools for program transforma-
tion. For this, it has developed complex analyses and transformations
(from lexical and syntaxic to semantic analyses, down to platform- spe-
cific optimizations). These two communities appear today quite com-
plementary and are starting to meet again in the Software Language
Engineering (SLE) field.”

50

http://link.springer.com/article/10.1007%2Fs10270-012-0266-8

Jezequel CDGR12 — Illustration

Compilation shortcomings

MDE solutions

MDE shortcomings

Compilation solutions

Increasing need for pars-
ing tools due to increase in

Efficient parsing and

parser generators

IRs contain more and more
complex information,
more and more complex

Complex data represen-
tation and Separation of
Concerns

number of DSLs IR processings,
Platform Description | Capture of platform spe- Maintainability Homogeneization of soft-
Model cific knowledge through ware through generative

dedicated descriptions

approaches

Tool efficiency and scala- | Sophisticated — algorithms Documentation Metamodels as documen-
bility and heuristics tation
Increasingly complex | Know-how in sophis- Error-prone and time con- | Automation through meta-

model transformations

ticated algorithms de-
velopment and program
transformation paradigms

suming development tasks

tools and metatooling

Ordering of the compila-
tion pass

Design-by-Contract to
limit possible choices to
meaningful choices

The figure, taken from the paper, shows how the two spaces may mutally
benefit from each other: shortcomings of one space may be addressed by
adopting solutions known in the other space.

51

4.24 VolterSBK14
VolterSBK14 — Data

Citation

[33]

Title
Towards User-Friendly Projectional Editors

Online URL
http://mbeddr.com/files/projectionalEditing-sle2014.pdf

Required concepts
parsing, IDE

Provided concepts
projectional editing

Annotation
The paper analyzes usability issues with projectional editing, but it
actually may also serve a good reference for a definition and charac-
terization of projectional editing as such. The discussion demonstrates
key characteristics of projectional editing, e.g., the combination of no-
tional styles and the use of composition techniques. We mention, in
passing, to another recent paper on projectional editing [22]

52

http://mbeddr.com/files/projectionalEditing-sle2014.pdf

VolterSBK1/ — Illustration

f®> €« | Concrete | €| Abstract <« | Concrete | €| Abstract

> Syntax —» | Syntax Tree > _l Syntax ry Syntax Tree

The figure, taken from the paper, illustrates the difference between parser-
based editors (ParEs) and projectional editors (ProjEs). We quote from the
paper: “In ParEs (left), users see and modify the concrete syntax. A parser
constructs the AST. In ProjEs, users see and interact with the concrete
syntax, but changes directly affect the AST. The concrete syntax is projected
from the changing AST.”

53

References

1]

Tiago L. Alves and Joost Visser. A Case Study in Grammar Engineering.
In Software Language Engineering, First International Conference, SLE
2008, Reuvised Selected Papers, volume 5452 of LNCS, pages 285-304.
Springer, 2009.

J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Madison,
Wisconsin, USA: University of Wisconsin Press, 1983.

Jean Bézivin. Model Driven Engineering: An Emerging Technical Space.
In Generative and Transformational Techniques in Software Engineer-
ing, International Summer School, GTTSE 2005, Revised Papers, vol-
ume 4143 of LNCS, pages 36-64. Springer, 2006.

Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-
Pierre Gervais, Frédéric Jouault, Dimitrios S. Kolovos, Ivan Kurtev,
and Richard F. Paige. A Canonical Scheme for Model Composition.
In Model Driven Architecture - Foundations and Applications, Second
European Conference, ECMDA-FA 2006, Proceedings, volume 4066 of
LNCS, pages 346-360. Springer, 2006.

Martin Bravenboer, Eric Tanter, and Eelco Visser. Declarative, formal,
and extensible syntax definition for AspectJ. In Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, pages 209-228.
ACM, 2006.

William R. Cook and Ralf Lammel. Tutorial on Online Partial Eval-
uation. In Proceedings IFIP Working Conference on Domain-Specific
Languages, DSL 2011, volume 66 of EPTCS, pages 168-180, 2011.

James R. Cordy. Excerpts from the TXL Cookbook. In Generative and
Transformational Techniques in Software Engineering I1I - International
Summer School, GTTSE 2009, Revised Papers, volume 6491 of LNCS,
pages 27-91. Springer, 2011.

Giorgios Economopoulos, Paul Klint, and Jurgen J. Vinju. Faster Scan-
nerless GLR Parsing. In Compiler Construction, 18th International
Conference, CC 2009, Proceedings, volume 5501 of LNCS, pages 126—
141. Springer, 20009.

o4

[9]

[10]

[11]

[12]

[15]

[16]

Martin Erwig and Eric Walkingshaw. Semantics-Driven DSL Design. In
Marjan Mernik, editor, Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, pages 56-80. IGI Global, 2012.

Martin Erwig and Eric Walkingshaw. Semantics First! - Rethinking
the Language Design Process. In Software Language Engineering - 4th
International Conference, SLE 2011, Revised Selected Papers, volume
6940 of LNCS, pages 243-262. Springer, 2012.

Jean-Luc Hainaut. The Transformational Approach to Database En-
gineering. In Generative and Transformational Techniques in Software
Engineering, International Summer School, GTTSE 2005, Revised Pa-
pers, volume 4143 of LNCS, pages 95-143. Springer, 2006.

Hans-Jorg Happel and Stefan Seedorf. Applications of Ontologies in
Software Engineering. In Proceedings of International Workshop on Se-
mantic Web Enabled Software Engineering (SWESE 2006), 2006. 14

pages.

Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Christian Wende,
and Marcel Bohme. Generating safe template languages. In Generative

Programming and Component Engineering, Sth International Confer-
ence, GPCE 2009, Proceedings, pages 99-108. ACM, 2009.

Markus Herrmannsdoerfer, Sander Vermolen, and Guido Wachsmuth.
An Extensive Catalog of Operators for the Coupled Evolution of Meta-
models and Models. In Software Language Engineering - Third Interna-
tional Conference, SLE 2010, Reuvised Selected Papers, volume 6563 of
LNCS, pages 163-182. Springer, 2011.

John Hughes. The Design of a Pretty-printing Library. In Advanced
Functional Programming, First International Spring School on Advanced
Functional Programming Techniques, AFP 1995, Tutorial Text, volume
925 of LNCS, pages 53-96. Springer, 1995.

Jean-Marc Jézéquel, Benoit Combemale, Steven Derrien, Clement Guy,
and Sanjay V. Rajopadhye. Bridging the chasm between MDE and the
world of compilation. Software and System Modeling, 11(4):581-597,
2012.

95

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

Kai Koskimies. Object-Orientation in Attribute Grammars. In At-
tribute Grammars, Applications and Systems, International Summer
School SAGA 1991, Proceedings, volume 545 of LNCS, pages 297-329.

Springer, 1991.

Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological spaces:
An initial appraisal. In Proceedings of CooplS, DOA’2002 Federated
Conferences, Industrial track, 2002. 6 pages.

Ralf Lammel. Grammar Adaptation. In Proceedings of FME 2001
(International Symposium of Formal Methods Europe), volume 2021 of
LNCS, pages 550-570. Springer, 2001.

Ralf Lammel and Erik Meijer. Mappings Make Data Processing Go
'Round. In Generative and Transformational Techniques in Software
Engineering, International Summer School, GTTSE 2005, Revised Pa-
pers, volume 4143 of LNCS, pages 169-218. Springer, 2006.

Ralf Lammel and Erik Meijer. Revealing the X/O Impedance Mismatch
- (Changing Lead into Gold). In Datatype-Generic Programming - In-
ternational Spring School, SSDGP 2006, Revised Lectures, volume 4719
of LNCS, pages 285-367. Springer, 2007.

David H. Lorenz and Boaz Rosenan. Cedalion: a language for lan-
guage oriented programming. In Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2011, part of SPLASH 2011, pages
733-752. ACM, 2011.

Daniel L. Moody. The ”Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering. IEEE Trans.
Software Eng., 35(6):756-779, 2000.

Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benoit
Combemale. Modeling modeling modeling. Software and System Mod-
eling, 11(3):347-359, 2012.

Paul Klint and Ralf Lammel and Chris Verhoef. Toward an engineer-
ing discipline for grammarware. ACM Trans. Softw. Eng. Methodol.,
14(3):331-380, 2005.

56

[26]

[27]

28]

[34]

Lukas Renggli, Tudor Girba, and Oscar Nierstrasz. Embedding Lan-
guages without Breaking Tools. In ECOOP 2010 - Object-Oriented
Programming, 24th European Conference, Proceedings, volume 6183 of
LNCS, pages 380-404. Springer, 2010.

John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM annual conference - Volume
2, ACM ’72, pages 717-740. ACM, 1972.

John C. Reynolds. Definitional Interpreters for Higher-Order Program-
ming Languages. Higher-Order and Symbolic Computation, 11(4):363—
397, 1998.

Tim Sheard. Accomplishments and Research Challenges in Meta-
programming. In Semantics, Applications, and Implementation of Pro-
gram Generation, Second International Workshop, SAIG 2001, Proceed-
ings, volume 2196 of LNCS, pages 2-44. Springer, 2001.

Emin Giin Sirer and Brian N. Bershad. Using production grammars in
software testing. In Proceedings of the Second Conference on Domain-
Specific Languages (DSL 1999), pages 1-13. ACM, 1999.

Dave A. Thomas. The Impedance Imperative - Tuples + Objects +
Infosets = Too Much Stuff! Journal of Object Technology, 2(5):7-12,
2003.

Laurence Tratt. Domain specific language implementation via compile-
time meta-programming. ACM Trans. Program. Lang. Syst., 30(6),
2008.

Markus Vélter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. To-
wards User-Friendly Projectional Editors. In Software Language Engi-
neering - 7th International Conference, SLE 201/, Proceedings, volume
8706 of LNCS, pages 41-61. Springer, 2014.

Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation.
In ECOOP 2007 - Object-Oriented Programming, 21st European Con-
ference, Proceedings, volume 4609 of LNCS, pages 600-624. Springer,
2007.

o7

[35] Guido Wachsmuth. A Formal Way from Text to Code Templates. In
Fundamental Approaches to Software Engineering, 12th International

Conference, FASE 2009, Proceedings, volume 5503 of LNCS, pages 109—
123. Springer, 2009.

58

	Disclaimer
	Acknowledgment
	Metamodel of the bibliography
	Papers of the bibliography
	Koskimies91
	Hughes95
	Reynolds98
	SirerB99
	Sheard01
	KurtevBA02
	Thomas03
	Hainaut06
	HappelS06
	Bezivin06
	BezivinBFGJKKP06
	BravenboerTV06
	AlvesV09
	Wachsmuth09
	Moody09
	RenggliGN10
	HeidenreichJSWB09
	Cordy11
	ErwigW12a
	CookL11
	HerrmannsdoerferVW11
	MullerFBC12
	JezequelCDGR12
	VolterSBK14

